ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 1000

Building an industry: offshore wind in Scotland

			NSOF

Orsted

DDUCDA MME CDUNCU

SIDE EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSO

Red Rock Power

EVENT SPONSOR

EVENT SPONSOR OFFICIAL MEDIA PARTI

RWF

V Fred, Olsen Renewables

Claire Mack Chief Executive Scottish Renewables

WITH THANKS TO OUR SPONSORS & SUPPORTERS

Jim Smith Managing Director, SSE Renewables

Dr Carolyn Heeps Head of Offshore Wind, Fred. Olsen Renewables

Olivier Terneaud Vice President, Offshore Wind, Total

Dan Finch Managing Director, Ocean Winds UK

Michael Hannibal Partner, Copenhagen Infrastructure Partners **ORGANISED BY**

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 1200

Barriers and opportunities to UK supply chain growth organised by ORE Catapult

EXHIBITION SPONSOR

Orsted

SIDE EVENT SPONSOR

EVENT SPONSOR

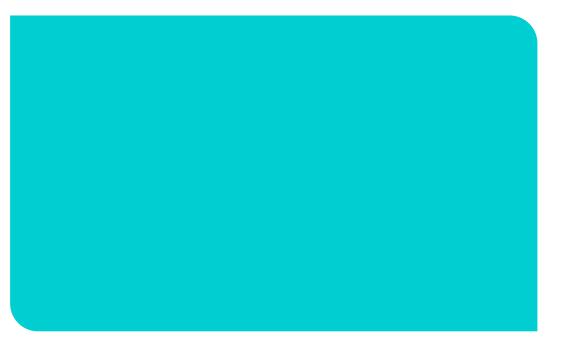
EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSO

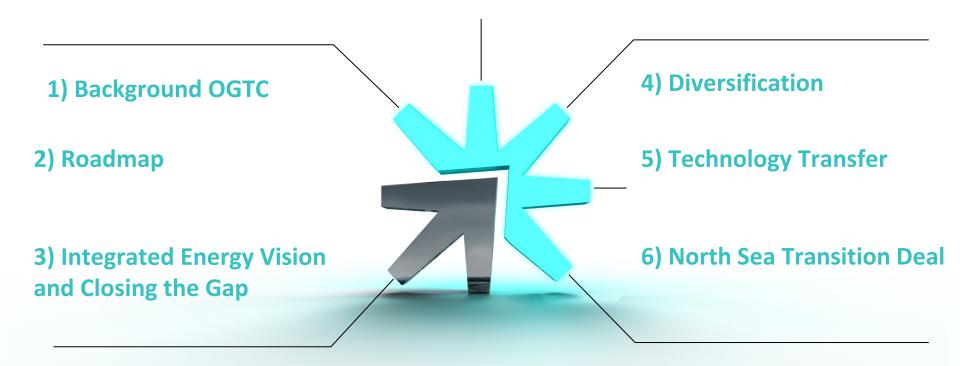
EVENT SPONSOR

Fred, Olsen Renewables

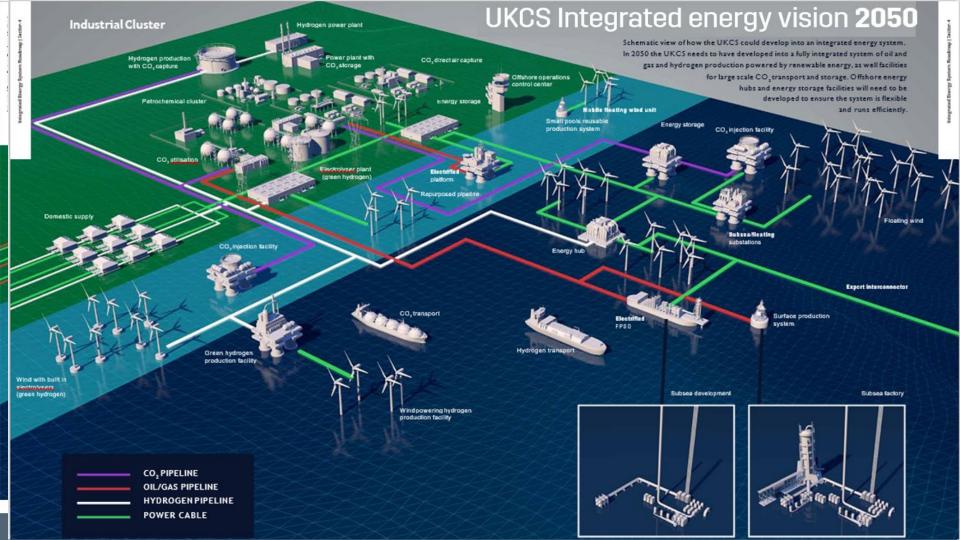


Andrew Macdonald Senior Innovation Manager and OWGP Lead ORE Catapult

Myrtle Dawes Solution Centre Director OGTC



Scottish Renewables Offshore Wind Conference


Barriers and Opportunities to UK Supply Chain Growth

Myrtle Dawes, Solution Centre Director

21 April 2021

Programme	Theme	Outcome *		
EMISSIONS REDUCTION	Field development			
	Production, operations and logistics			
	Late life and decommissioning	Technology to help reduce UKCS operational emissions to net zero		
ENERGY SYSTEM INTEGRATION	Renewables and energy storage			
	Hydrogen and other clean fuels			
	Carbon capture, utilisation and storage	Technology to help create an integrated net zero offshore energy system		
OFFSHORE ENERGY 4.0	Smart assets			
	Field automation and remote control			
	Robotics and autonomous systems	Technology to enable remotely controlled operations empowered by data, automation and robotics		



Over £430 billion of investment will be required for the UKCS to achieve net zero - spread across all four key sectors

Total domestic Total Domestic investment investment economic required required¹ impact £80bn² **£123bn**² £0.9tr £60bn £100bn £0.6tr £70bn £120bn £0.8tr $\langle \hat{o} \rangle$ £90bn £60bn £0.2tr

Includes domestic and international spend Includes decommissioning spend

Big energy players are getting involved in new CCUS and hydrogen projects across the UK

 $\langle \circ \rangle$

1	Hydrogen Offshore Production (HOP)	Aquatera, Doosan, Cranfield University, EMEC Hydrogen, NOV, OGTC	Repurpose offshore infrastructure for hydrogen production	Feasibility
2	Project Acorn – CCS and Hydrogen	Pale Blue Dot,Shell, Total, Chrysaor	Utilise existing oil and gas infrastructure for transportation and storage of CO ₂ . Then produce blue H ₂	FEED
3	Northern Endurance Partnership	BP, Eni, Equinor, Shell, Total and National Grid	Capture CO ₂ from natural gas-fired plant and store in depleted oil and gas fields in North Sea	Feasibility
4	Net Zero Teesside	BP, Eni, Equinor, Shell and Total	Develop CO_2 transport and storage infrastructure in the North Sea	Feasibility
5	HyNet Northwest	Jaguar, Land Rover, Essar, Unilever, Inovyn, Encirc,Cargill, CPW, Novelis,Prinovis, Pilkinton, CF, Ibstock Brick, Essar, Solvay, North west, Hydrogen Alliance	Develop blue hydrogen production and industrial fuel switching alongside CCS	FEED
6	Draxpower station	Drax group, National Grid Ventures, Equinor	Develop scalable bioenergypower production with CCUS	Pilot
7	H2H Saltend	Equinor	Develop blue hydrogen production with carbon capture and storage in the Southern North Sea	FEED
8	Gigastack	Ørsted, ITMPower and Element Energy	Develop green hydrogenproduction using offshore wind power	Feasibility
9	Project Dolphyn	ERM	Develop green hydrogen production using floating offshore wind power	FEED

TECHNOLOGY FOR 2050

We have identified a range of critical technologies, which include but are not limited to:

Oil & Gas

Ammonia or other low-carbon fuelled turbines

Marine hydrogen transport solutions

Plaform electrification (AC/DC cabling solutions)

Subsea electrification cost reduction

Offshore Wind

UK-specific floating wind foundations

Innovative floating wind mooring systems

Dynamic cabling solutions to reduce wind downtime

Carbon Capture & Storage

Modelling of geological behaviours of CO2

Modular, retrofittable carbon capture solutions

Direct air/seawater capture

CO2-compatible well plug and abandonment techniques

High-capacity sorbents durable at high temperatures

Hydrogen

Seawater electrolysis

Electrolyser catalyst innovation

Subsea electrolyser systems incorporating compression

Improved efficiency of existing SMR and ATR technology

Enhanced SMR reactor membranes and catalysts

Alternative blue hydrogen production methods

Inter-seasonal hydrogen storage

Technology Transfer

Spar

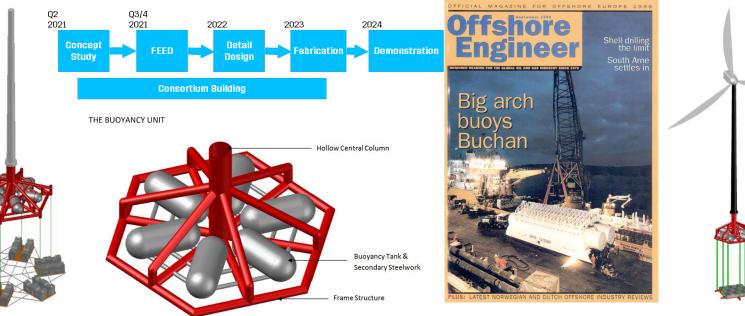
Semi-Submersible

TLP

⋇

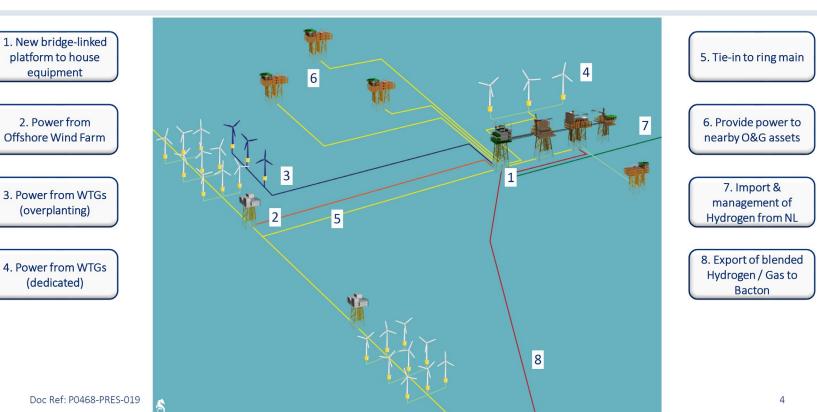
Partnering to develop and deliver technology for an affordable net zero North Sea

Axis TLB



Axis Tension Leg Buoy for Floating Wind/Wave Energy

Application


(Based on Buchan 'A' MWA Technology)

North Sea Transition Deal – 30% local technology

NEPTUNE

ENERGY

OGTC

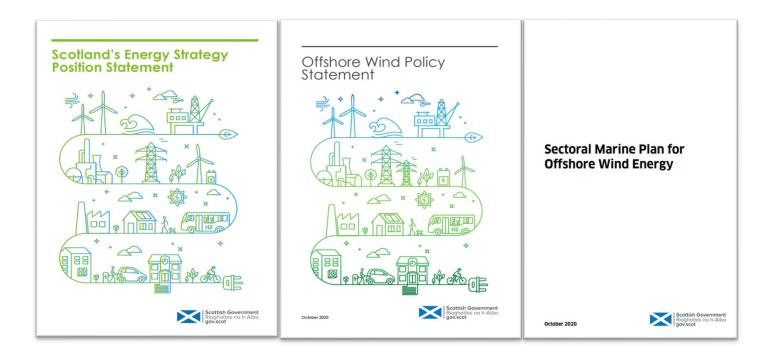
¥

David Stevenson Head of Energy Supply Chain Scottish Government

 Δ

David Stevenson Head of Offshore Wind Policy & Supply Chain

 \bigtriangleup


 \Leftrightarrow

 \Leftrightarrow

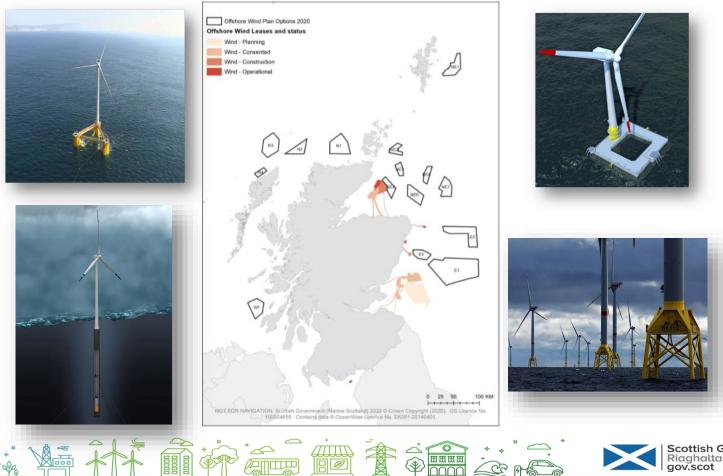

0

ШШШШ

*

Setting the Bar

80


田田田田

Scottish Government Riaghaltas na h-Alba gov.scot

The Opportunity in Scotland

 \bigtriangleup

 \Leftrightarrow

80

ШШШШ

*

Dave Sweenie Development Manager EDF Renewables

EDF RENEWABLES

Scottish Renewables

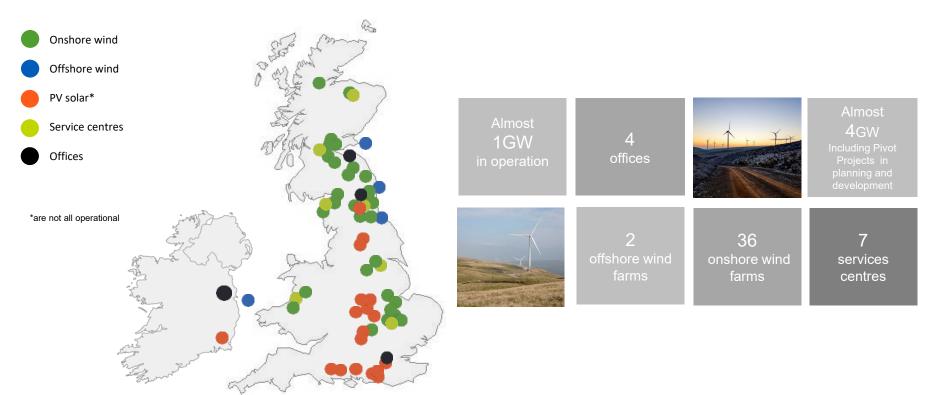
April 2021

EDF Renewables

We're one of the UK's leading renewable energy companies, specialising in wind and solar power as well as battery storage technology.

We develop, build, operate and maintain wind farms and other renewable technologies throughout their lifetime.

We have an operational portfolio of 36 wind farms – including two offshore wind farms and one of the largest operational battery storage units in Europe.


We are busy building the 450 MW Neart na Gaoithe offshore wind farm in the Firth of Forth and we continue to install roof mounted solar panels on a number of Tesco supermarkets.

EDF Renewables has almost 1GW in operation and another 4 GW in our development pipeline.

Codling Offshore

We bought a 50% interest in the Codling offshore wind farm project in Ireland from Hazel Shore in February 2020. EDF Renewables UK and Ireland, will now partner with Fred Olsen Renewables Ltd, which already owns 50% to develop and build the project.

The project is located south of Dublin, 13 km off the coast of County Wicklow, and benefits from the favourable conditions for offshore wind off the east coast of Ireland.

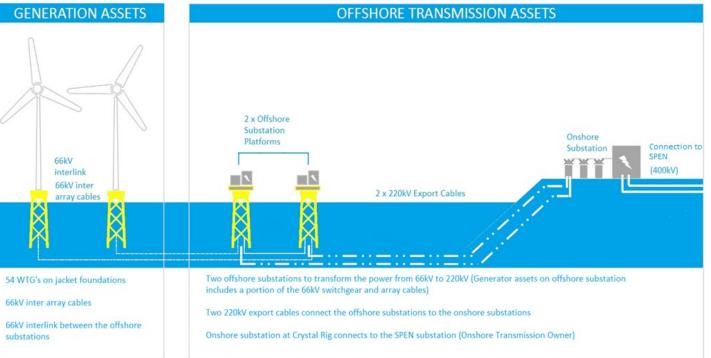
The initial development work started in 2003. Codling is spread across two sites, one of which, Codling 1, is consented. As an indication, the capacity of the project will be up to 1.5 GW of installed capacity.

bad factors based on the five year rolling averages on unchanged configuration basis using Table 6.5 of 'Digest of UK Energy Statistics' - July 2019 Based upon the erage domestic electricity consumption per home (temperature corrected) per the Energy Consumption in the UK.

Blyth Offshore Demonstrator

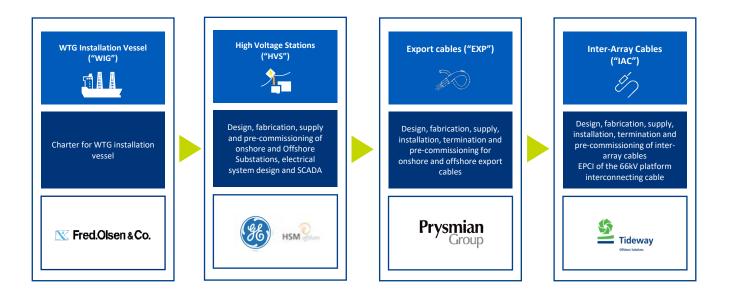
The BOD phase 2 work builds on the success of BOD 1, commissioned in 2017, which demonstrated a world first float out an sink gravity foundation and innovative 66kV cables. BOD 2 will demonstrate floating wind technology in shallow water depth using semisubmersible or barge type technology.

The project is located off the coats of Northumberland, with the BOD 2 array 14 km offshore. The water depth at the site is 52-58m with a strong average wind conditions.


A consent variation is underway as is procurement for supply of main components. The project is targeting participation in the CfD AR4 due to be held in late 2021/22.

.oad factors based on the five year rolling averages on unchanged configuration basis using Table 6.5 of 'Digest of UK Energy Statistics' - July 2019 Based upon the rerage domestic electricity consumption per home (temperature corrected) per the Energy Consumption in the UK.

Neart na Gaoithe


Neart na Gaoithe Main Contracts

Neart na Gaoithe Main Contracts

Jacket Fabrication – Saipem - Harland & Wolff Methil



Pile Casing Marshalling – Saipem - Port of Leith

Marine Hub – Siemens Gamesa – Port of Dundee

Supply Chain Challenges

- The Developer is not the only buyer
- The Tier 1's
 - Main buyers of Tier 2's and Tier 3's
 - Multinational Organisations
 - Established supply chain
- Competition
 - Competition for sites (Round 4, Scotwind etc.)
 - Competition for consents
 - Competition for CfD
 - Not all projects get built
- Contracting
 - Cost perceived to be the main driver, but not the only one
 - Risk on delivery
 - Risk on quality

Supply Chain Opportunities

- Government Initiatives
 - BEIS Supply Chain Plan in Auction Round 4
 - CES Supply Chain Design Statement in Scotwind
- Early Engagement
 - Early Engagement with Tier 1's
 - Limited number of Tier 1's
 - Understand the Tier 1's
 - Act project agnostic
 - Early Engagement with the developers
 - Understand the developers
 - Developers, and groups of developers, can engage more with supply chain
 - Early Engagement with Enterprise Agencies and Government

Supply Chain Opportunities

- Clusters, Working Groups and Industry Bodies
 - Forth and Tay and Deepwind
 - OWGP, OWIC, SOWEC
 - ORE Catapult
- Collaboration and Innovation
 - Developers collaboration
 - Wind farms in close proximity
 - Developers global portfolios
 - Supply Chain collaboration
 - Innovation
 - Reduce risk in offshore deployment
 - Robust delivery
 - Reduce through life costs
- Ideas?

Thank You

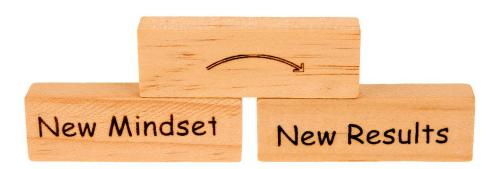
Steve Chisholm Operations Director Global Energy Group

BARRIERS OR SIMPLY REQUIREMENTS OF ENTRY ?

- Infrastructure, facilities and skilled resources
- A clear market offering you have to pick and choose
- Commercial competitive goods or services

INNOVATION - ESSENTIAL TO COMPETITIVENESS

- Now more R&D initiatives than ever before in Global's history
- O The launch of the Global Incubator
- More collaboration and joint ventures than at any time previously



PEOPLE - NEW SKILLS, DIFFERENT MINDSET

- Move from project to production line culture
- **Requirement for reskilling**
- **Quality jobs alongside automated solutions**

WEIGHING COMMERCIAL RISK v OPPORTUNITY

- Quantities and therefore costs typically higher
- Contract terms more onerous LD's, Bonds, Warranties
- Know your sweet spot "Riches in Niches"

A SEA OF OPPORTUNITY

- Floating Wind Manufacturing and Assembly
- **The Rolled Steel Products of tommorow**
- A new era based on alliances, partnerships and collaboration

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 1415

The transition two-step: powering a whole energy system with offshore wind

EXHIBITION SPONSOR

Orsted

SIDE EVENT SPONSOR

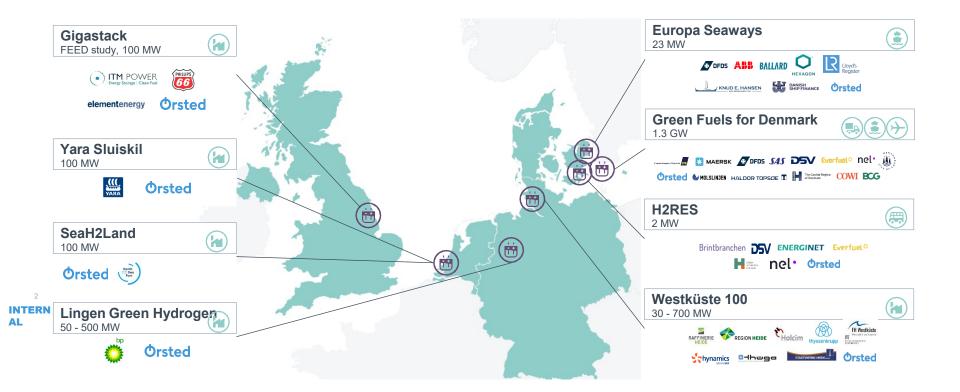
EVENT SPONSOR

Fred, Olsen Renewables

EVENT SPONSOR

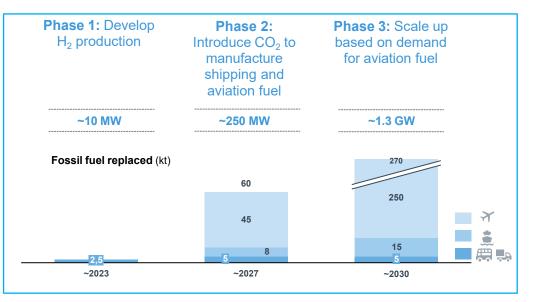
EVENT SPONSO

EVENT SPONSOF



Clare Lavelle Head of Energy Consultancy Arup

Benj Sykes Head of Market Development, Consenting and External Affairs Ørsted Let's create a world that runs entirely on green energy



Ørsted's European hydrogen projects:

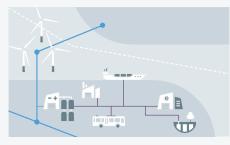
Green Fuels for Denmark

INTERN AL

Offshore wind-to-hydrogen buildout timeline

2020-2025 Co-located projects

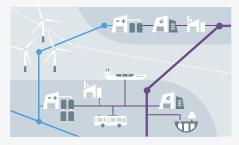
Develop renewable hydrogen to replace fossil hydrogen



INTERN

AL

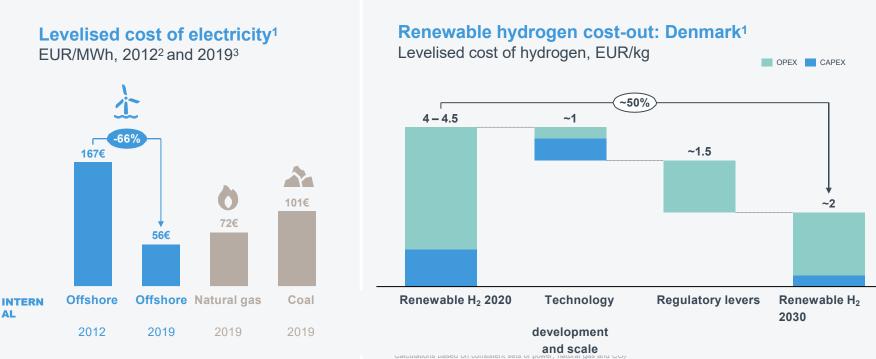
2025-2030 Hydrogen clusters


Optimise use of infrastructure, and storage

Green Fuel for Denmark

Westküste 100

- Hub at Grangemouth
 Hub linking airports and marine transport ports
- Fertiliser production


2030-2040 Integrated hydrogen grid

A transnational hydrogen grid and market

- 💦 🔶 Inte
 - Integrated hydrogen network
 - Exports
 - Aviation and marine fuel hub

We see many similarities between our offshore wind journey and the required cost-out journey for hydrogen towards 2030

prices Source: Ørsted and IEA, BNEF and Hydrogen Europe

1 BNEF H1 2019 LCOE Update, current LCOE and Ørsted Calculation. 2 2012 generic offshore wind, Northwest Europe, FID 2012. 3 Offshore wind 2019: Ørsted calculations from UK CID Round III. Onshore wind: average of DE, NL and UK mid-scenarios. Solar PV, Gas: average of DE, UK mid-scenarios. Coal: DE mid-scenario. Nuclear: UK mid-scenario. Exchange rate EUR/USD: 0.89, YOY inflation 2017-2018: 1.75%

Ørsted's hydrogen vision

With the right framewor k and timely investme nts, we believe renewabl hydrogen can be costcompetiti ve by 2030. But the cost-

INTERN AL

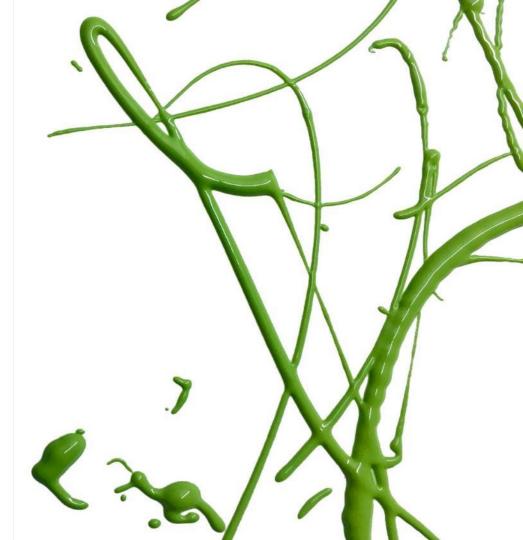
Robin Watson CBE Chief Executive Wood Group

Scottish Renewables 2021 Offshore Conference

Purposeful Investment in Energy Transition

Energy Transition

Wood is helping customers navigate towards a sustainable energy future through optimised operations, low carbon production systems and pioneering renewable projects.


Hydrogen is poised to grow rapidly

- Ten-fold increase predicted by 2050
- Quarter of the global CO₂ reduction by 2050
- Investment of \$2.5tr
- Large capital projects already emerging, e.g. HyNet £920m
- Excellent potential to repurpose facilities and infrastructure
- Many governments are heavily investing in hydrogen studies
- The EU's Hydrogen Strategy plans to have renewable hydrogen technologies reach maturity and be deployed at large scale across all hard-to-decarbonise sectors by 2050

Purposeful Investment

Collaboration on a new scale

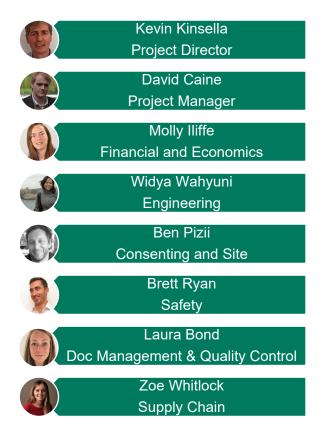
Molly Iliffe Principal Consultant – Energy Transition and Hydrogen ERM

ERM The business of sustainability

Depa

Department for Business, Energy & Industrial Strategy

ERM Dolphyn Project; Green Hydrogen at Scale from Floating Offshore Wind

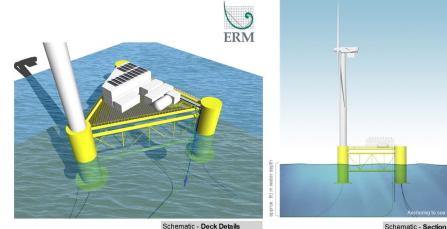

Scottish Renewables Offshore Wind Conference Molly Iliffe 21 April 2021 www.erm.com

www.ermdolphyn.erm.com

© Copyright 2020 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM

Agenda & ERM team

- The ERM Dolphyn concept
- Development timeline
- Procurement needs and connecting with the supply chain
- Context and background



About ERM

Environmental Resources Management (ERM) is a leading global provider of **environmental**, **health**, **safety**, **risk**, **social** consulting services and **sustainability** related services. ERM is committed to providing a service that is consistent, professional and of the highest quality to create value for our clients. We have worked with many of the Global Fortune 500 companies delivering innovative solutions for business and selected government clients helping them understand and manage the sustainability challenges that the world is increasingly facing.

The ERM Dolphyn concept

Schematic - Deck Details

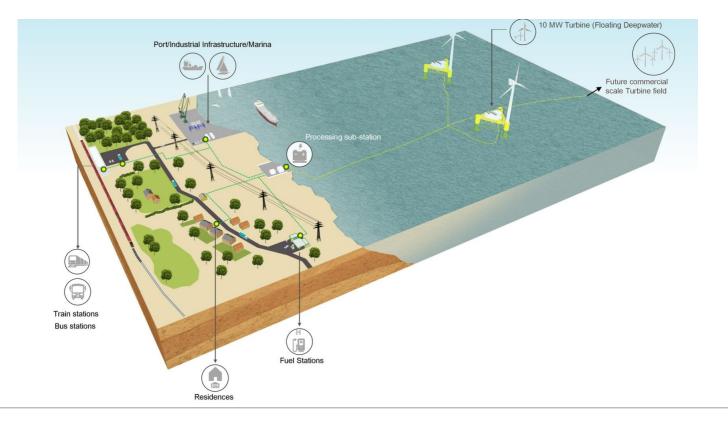
Normally unmanned

- Autonomous system, operations ٠ from shore
- High reliability and availability .
- Low maintenance requirement .

Additional project drivers

- Cost drivers: modular system ٠ with potentials for optimisation
- Ease of construction and ٠ installation
- Minimisation of GHG ٠

Floating substructure and station keeping system


On-board freshwater production and hydrogen production and utilities

Integrated power generation system (off-grid)

Standby power generation system

Hydrogen export to shore

Linking into local energy transition ambitions

Long-term development plan

	Operational from	Location	Hydrogen production rate (tonnes/yr)	Hydrogen production rate (TWh/y)
Small scale hydrogen performance demonstration trials	2022	UK (near shore)	n/a – short duration performance trials	n/a
Commercial scale demonstrator unit (10MW)	2024	Aberdeen	900	0.03
Deployment of multiple commercial fields 100-300 MW	Late 2020s onwards	UK (North Sea and Celtic Sea) and global locations	9,000 – 27,000	0.30 - 0.90
GW scale large commercial projects	Early 2030s onwards	UK (North Sea and Celtic Sea), other sites globally	~360,000	12.0

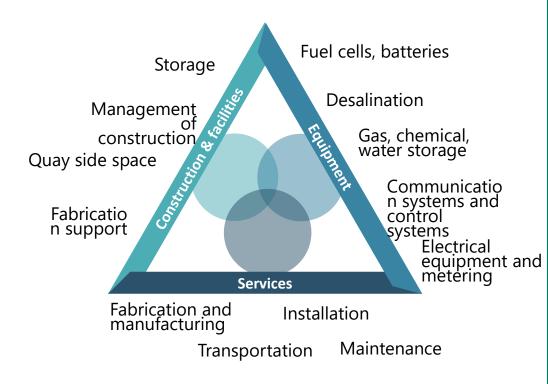
ERM Dolphyn – organisations helping make it happen

Principle Power – Designing the sub-structure based on the proven Wind Float Atlantic design

NEL – Europe's leading Electrolyser Technology company developing electrolysis requirements using their experience of electrolysis at sea (ships, submarines)

Doosan – Leading integration engineering for the PEM electrolyser working alongside NEL

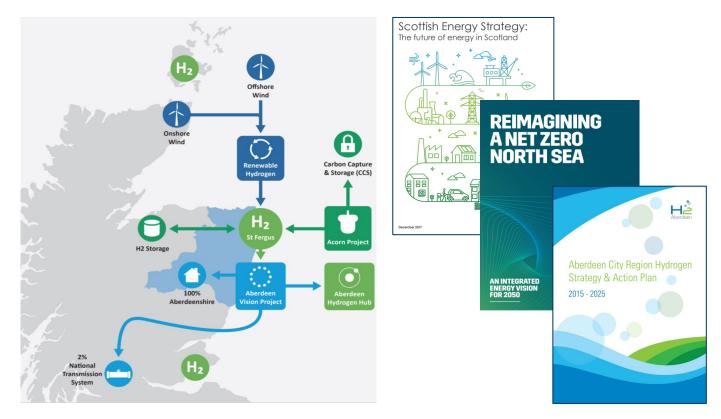
A DORIS Group Company



Tractebel – Designing the sub-structure deck and turbine interface utilising their experience of working on the Wind Float Atlantic project

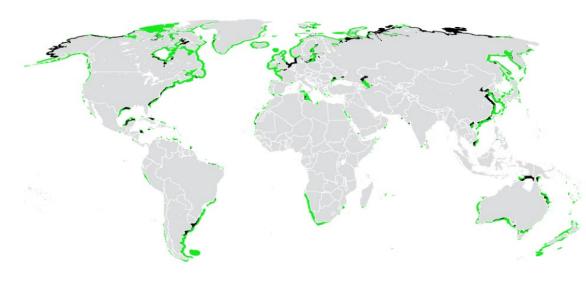
Offshore Design Engineering – Designing the top-sides including desalination unit, electrolyser interface, hydrogen storage, stand-by power unit and export pipeline

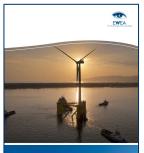
Lloyds Register – Independent 3rd party certification of the design


Supply chain needs

• Work safely

- Operate
 sustainably
- Bring innovation and help us reduce project risks
- Deliver contract
 requirements
- Are ready to help us take on challenges
- Want to come along the ERM Dolphyn journey with us


ERM Dolphyn viewed as a core project for UK's Hydrogen coast strategy



ERM Dolphyn global potential

Over **12,000 GW** Floating Wind Capacity of which majority in US, China, Japan and Europe (Equivalent potential for 1000m Te of hydrogen/yr)

Floating (more than 60m) Traditional offshore

Deep water The next step for offshore wind energy

Note: Suitable Areas where wind exceeds 7m/s within 200km of shoreline Source: British Oceanographic Data Centre, Global Wind Atlas

Get in touch

We are interested in hearing from anyone who is able to support the project now as well as connecting with you around what you are doing and where we might find innovation together.

Please get in touch directly at <u>connect_ermdolphyn@erm.com</u> www.ermdolphyn.erm.com/

Thank you

Dolphyn Enquiries connect_ermdolphyn@erm.com Molly Iliffe Finance & Economics Manager – ERM Dolphyn Molly.iliffe@erm.com Edinburgh, UK

Johan Sandberg Head of Business Development Aker Offshore Wind

54

Aker Offshore Wind

Johan Sandberg

Head of Business Development

20 April 2021

The Aker Group

Aker Offshore Wind in brief

A pure play deepwater wind IPP

operate offshore wind

projects

close cooperation with leading global partners (Ulsan), the US (California), Norway and the UK (Scotland)

Position in four markets

South Korea

Renewables to account for 20% by 2030 12 GW offshore wind by 2030

California, US

60% renewable electricity generation by 2030 and carbon neutrality by 2045

Norway

Authorities preparing to open areas for offshore wind development from 2021

Scotland

Targets net zero emissions by 2045 11GW offshore wind by 2030

Drive down cost (LCOE) to ~50 EUR / MWh by 2030

WindFloat Atlantic and Kinkardine

The 25MW WindFloat Atlantic floating offshore wind farm is fully operational and supplying electricity to Portugal's electrical grid.

The project features three MHI Vestas 8.4 MW turbines mounted on Principle Power's semisubmersible floating foundations. The 50 MW Windlfloat Kinkardine is partly operational and will be fully operational in 2021.

The project features five 9.5MW MHI Vestas turbines on Principle Power's semisubmersible foundation.

Cooperation agreement with Aker BP

Aker Offshore Wind and Aker BP enter cooperation agreement to accelerate the process of **decarbonizing** oil and gas assets and realize offshore wind in Norway at scale.

The companies will collaborate on concepts for efficient development of large offshore wind parks to enable effective offtake to oil and gas producing assets.

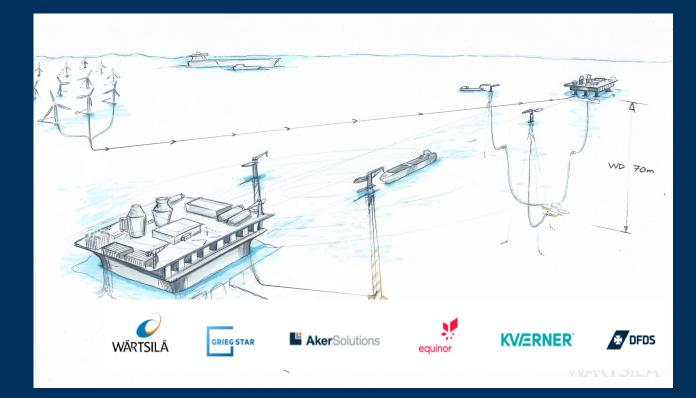
Aker Offshore Wind will develop and operate the wind parks.

Aker BP is a potential buyer of electricity from offshore wind along with other operators.

Wind for Oil – Cases

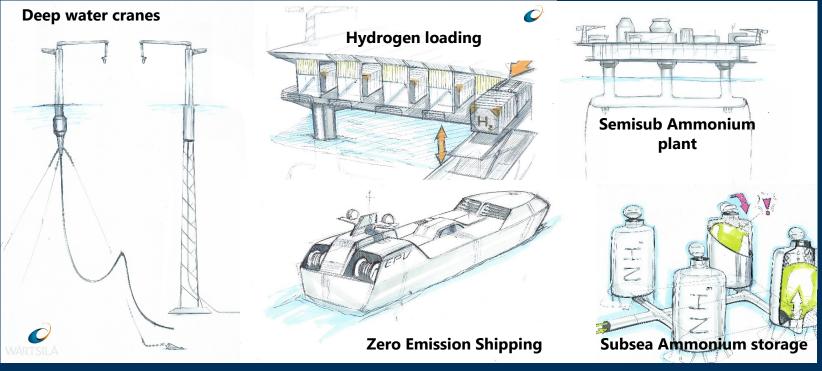
Autonomous - Wind for Gas Compression

- Subsea compression powered by wind
- Two Manifolds and Separator, Two floating 10/12 MW wind turbines
- Two production lines condensate and gas
- In case of "no wind" the gas is bypassing the compression at reduced rate


Direct Feed - FPSO powered by wind

- FPSO powered by 3 floating 12 MW wind turbines
- Powering topside processing equipment and subsea separation / pumping system. Gas turbines kept in partial load to quickly step in if needed due to wind conditions.
- Potential of developing an offshore grid connecting surrounding facilities and adding turbines

ZEEDS – Zero Emission Energy Distribution at Sea



ZEEDS - an open innovation project initiated by Wärtsilä, to explore the opportunities with zero emission shipping

New value chains for renewable fuels

Deep-water wind part of an emerging sustainable ocean economy

WITH THANKS TO OUR SPONSORS & SUPPORTERS

0845 tomorrow

ScotWind: a co-ordinated approach to a 2030 grid

Sponsored by

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 0845

ScotWind: a co-ordinated approach to a 2030 grid Sponsored by Scottish & Southern Electricity Networks Transmission

Ben Miller Senior Policy Manager Scottish Renewables

Greg Clarke Head of Corporate Affairs Transmission Scottish & Southern Electricity Networks Transmission

Lauren Logan

Strategy Officer and Offshore Coordination Lead Scottish & Southern Electricity Networks Transmission

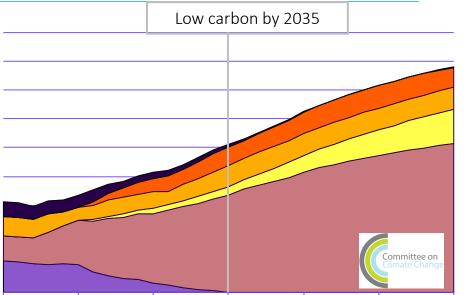
ScotWind: a co-ordinated approach to a 2030 grid

Scottish Renewables Offshore Wind Conference 22 April 2021

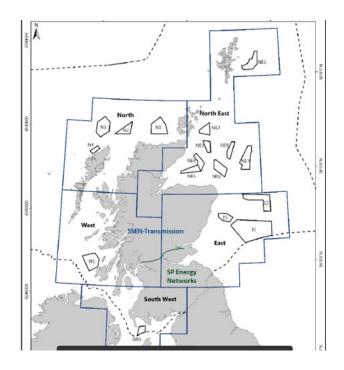
Agenda

Introduction & tackling grid barriers	Greg Clarke - Head of Corporate Affairs, SSEN Transmission				
Pathway to 2030	Lauren Logan - Strategy Manager and Offshore lead, SSEN Transmission				
A co-ordinated approach to a 2030 grid					
Next steps	Greg Clarke - Head of Corporate Affairs, SSEN Transmission				
Panel Q&A	As above, joined by				
Fallel QaA	Eric Leavy - Head of Transmission Networks, SP Energy Networks				
	Alice Etheridge - Offshore Coordination Senior Manager, National Grid ESO				
	Dr. Biljana Stojkovska - Technical Manager Offshore Coordination, National Grid ESO				

Introduction and tackling grid barriers

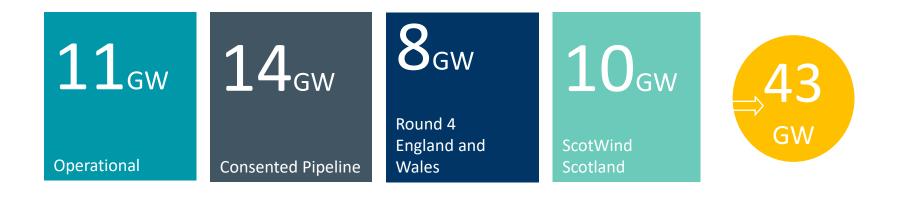

Greg Clarke Head of Corporate Affairs, SSEN Transmission

Net Zero and offshore wind


Source: Figure 3.4c of the Committee on Climate Change, The Sixth Carbon Budget: The UK's path to Net Zero. December 2020. Accessed 29 March 2021.

<u>Note</u>: Chart reflects UK electricity generation. Additional capacity is available through interconnection. Unabated fossil fuel generation includes coal and gas. Variable renewables include wind and solar. Firm power includes nuclear. Dispatchable low-carbon generation includes gas CCS, BECCS and hydrogen.

ScotWind and the OTNR

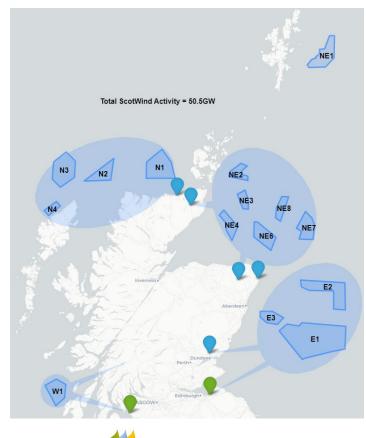

- The Offshore Transmission Network Review (OTNR) ran by BEIS, looks into the way that the offshore transmission network is designed and delivered, consistent with the ambition to deliver net zero emissions by 2050
- Pathway to 2030's objective: Enabling achievement of 40GW target for 2030 by increasing central coordination and accelerating delivering of the required onshore and offshore grid infrastructure
- The Transmission Owners and Electricity System Operator, with stakeholders, have a significant role to in achieving this outcome

ScotWind Roundtable: tackling grid barriers

- Shared ambition: identify tangible and deliverable solutions to the grid barriers to ScotWind development that ensure long-term benefit to consumers, the environment, local communities and other legitimate users of the sea
- Working together to ensure the grid infrastructure is in place for ScotWind to connect by 2030
- Supporting Scottish and UK Government 2030 offshore targets of 11 GW and 40 GW

Pathway to 2030: A co-ordinated approach to a 2030 grid

Lauren Logan Strategy Manager and Offshore Lead, SSEN Transmission



Offshore wind pipeline

- ScotWind leasing round capped at 10 GW
- To date, almost 50GW of generator interest at most option sites

Pathway to 2030: a co-ordinated approach to a 2030 grid

- Long lead time for electricity transmission investment design, development, consent, procurement and construction
- Aligned with offshore developers' timelines, means action is required now to achieve 2030 targets
- The ESO and TOs agree that a Central Design Team including both the ESO and TOs, led and chaired by the ESO, combining both onshore and offshore activities is the most collaborative and efficient approach towards a holistic network design for 2030
- This approach was encouraged at a BEIS/Ofgem led workshop and will be confirmed via OTNR governance

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
High- Ievel design	Validate offshore conn. works*	Develo	pment	Ofgem a Early pro	enting pprovals curement nd FID	C	Constructio	n	TARGET

*following estimates timeline for leasing round announcement

A co-ordinated 2030 grid

Co-ordinated approach will provide certainty on the timely development and delivery of strategic infrastructure and landing hubs

Providing developers:

- Certainty of grid connection offer
- Certainty of connection date
- Timeline in line with Crown Estate Scotland

Providing wider benefits over the long term too including:

- Minimising the impact to the environment and local communities where infrastructure will be situated
- Likely to be most economic delivery option for GB consumers
- Connecting renewable generation quicker and cheaper than current process
- Offering certainty to supply chain and manufacturers

Are there any additional opportunities or challenges?

Greg Clarke Head of Corporate Affairs, SSEN Transmission

- Delivering ScotWind in the most co-ordinated and efficient way is critical to meeting 2030 targets and the pathway to netzero
- The ESO and TOs will establish a central design team, following OTNR governance, with the output of a high-level design focusing on the strategic network infrastructure (Autumn 2021)
- Further development of this approach plus engagement with developers ongoing

What do you think of the proposed approach for a co-ordinated 2030 grid?

Greg Clarke - Head of Corporate Affairs, SSEN Transmission
Lauren Logan - Strategy Manager and Offshore lead, SSEN Transmission
Eric Leavy - Head of Transmission Networks, SP Energy Networks
Alice Etheridge - Offshore Coordination Senior Manager, National Grid ESO
Dr. Biljana Stojkovska - Technical Manager Offshore Coordination, National Grid ESO

Ask the panel a question using the Slido tab

Thank you for joining us

For any follow up discussions, or to join our stakeholder engagement distribution list for email updates and details of future engagement sessions please contact **transmission.stakeholder.engagement@sse.com**

Greg Clarke

Head of Corporate Affairs Transmission, Scottish & Southern Electricity Networks Transmission

Lauren Logan Strategy Officer and Offshore Coordination Lead, Scottish & Southern Electricity Networks Transmission

Eric Leavy Head of Transmission Networks, SP Energy Networks

Alice Etheridge Offshore Coordination Senior Manager, National Grid ESO

Dr. Biljana Stojkovska Technical Manager Offshore Coordination and Innovation Manager, National Grid ESO **ORGANISED BY**

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 0945

Breaking down barriers to deployment

EXHIBITION SPONSOF

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR EVENT SPONSOR EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OFFICIAL MEDIA PARTN

Renewables

EVENT SPONSOR

renews

Morag Watson Director of Policy Scottish Renewables

WITH THANKS TO OUR SPONSORS & SUPPORTERS

Nancy McLean Offshore Development Manager EDF Renewables

Dr Monica Fundingsland Advisor Sustainability Equinor

Consenting Challenges Floating Offshore Wind

Dr Monica Fundingsland Sustainability Advisor, Equinor April 2021

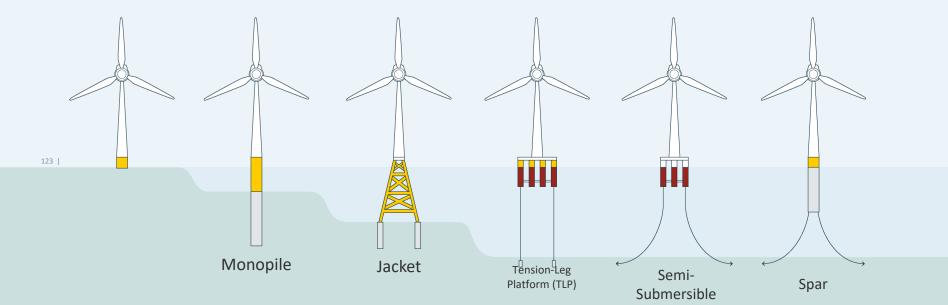
Contents

- Some aspects of floating technology which give rise to floating-specific consenting challenges
- Evidence gaps for floating offshore wind and what Equinor is trying to learn from our Hywind Scotland Pilot Park

Floating offshore wind foundations

Onshore wind

Smaller turbines 40 years of experience


Bottom-fixed offshore wind

Larger turbines, stronger winds 20 years of experience

Floating offshore wind

80% of wind resource is in waters deeper than 50 m

Technological maturity improving – expected to be cost competitive with bottom fixed by 2030

Interconnecting array cables

Barge

- Charge

Spar

Semi-Submersible

Cinica Cinata

> Tension-Leg Platform (TLP)

Anchors

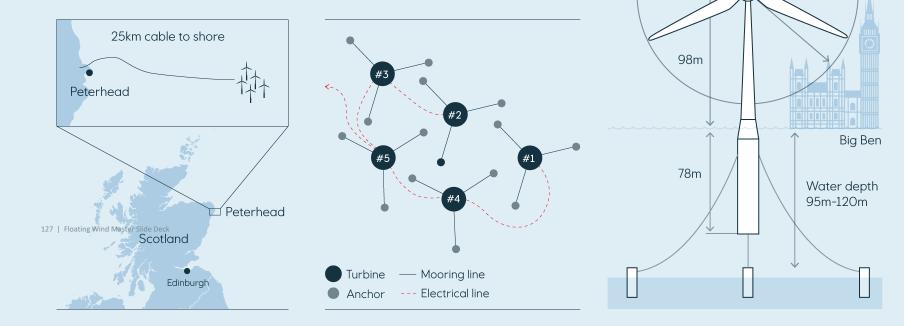
125

	Drag and suction anchors typically considered the most common and cost-effective solutions, where soil conditions are suitable			ine Silt Soft Firm Stiff and clay clay clay
	Drag Anchors	Suction Anchors	Driven Pile Anchors	Gravity Anchors
Industry experience	Drag Anchors Extensive (Hywind Demo)	Suction Anchors Extensive (HYS, HYT)	Driven Pile Anchors Extensive	Gravity Anchors Extensive
Industry experience Seabed	Extensive	Extensive		
	Extensive (Hywind Demo) Sand and soft conditions	Extensive (HYS, HYT) Sand, soft clay to stiff	Extensive Harder soil conditions	Extensive Harder soil conditions

Some of the evidence gaps for floating offshore wind consenting

- Marine mammal entanglement
- Understanding fish aggregation
- Displacement of fishing effort/fisheries exclusion
- Commercial fisheries coexistence
- EMF from dynamic cables suspended in water column
- Underwater noise and vibration
- Benthic disturbance from cables and mooring chains
- Ghost fishing marine mammals, birds, fish
- Underwater barrier effects
- Spatial and temporal use of FOW area by fish, marine mammals, birds

Entanglement of marine mammals/fish


- Disconnect between risk of entanglement and perception for HYS mooring lines
- May need consideration for other types of mooring or dynamic cables
- Entanglement in ghost fishing gear could be a bigger isuse

154m

Learning from Hywind Scotland Floating Offshore Wind Farm

The world's first floating wind park (Sep'17) Installed Capacity 30MW

Trials at Hywind Scotland 2020/21 to increase the evidence base for floating

Marine sound	Artificial reef effect/ colonisation	Static fishing trials	Fish diversity
 Installation for HyS/HyT low noise impact but «snapping» sound on Hywind Demo 	 Artificial reef effect/marine colonization of substructures could increase biodiversity Could conversely create location for invasive species 	 Floating wind may present greater conflict with commercial fishing than bottom fixed due to anchor chains, anchors, array cables 	 Turbines and substructures may have fish aggregation effects
 Operational noise study, deployment of 2 moored hydrophones for 3 months Output will be used to model implications for marine mammals and fish 	 Visual inspection of marine growth on substructures 6th – 15th June 2020 (combined with operational survey) 	 Test whether some fishing gear can be used safely within a floating offshore wind farm (fish traps, creels, jigging lines) 	 Environmental knowledge on potential effects of floating offshore windfarms on fish and benthic diversity (fish aggregation, reef effect, spill-over effect)
• Late 2020 - early 2021	 2020 survey completed Comparative data collected during operational survey '18 	 4 days/month for 5 months Postponed due to COV19 May-Sept 2021 	 May-Sept 2021 (combined with fishing trils) Sailbouy glider with mapping sensors and e-DNA from water samples (summer 2021)

© Equinor ASA

This presentation, including the contents and arrangement of the contents of each individual page or the collection of the pages, is owned by Equinor. Copyright to all material including, but not limited to, written material, photographs, drawings, images, tables and data remains the property of Equinor. All rights reserved. Any other use, reproduction, translation, adaption, arrangement, alteration, distribution or storage of this presentation, in whole or in part, without the prior written permission of Equinor is prohibited. The information contained in this presentation may not be accurate, up to date or applicable to the circumstances of any particular case, despite our efforts. Equinor cannot accept any liability for any inaccuracies or omissions.

Heather Donald Head of Project Consents SSE Renewables

THE MAIN BARRIERS TO CONSENTING OFFSHORE WIND PROJECTS AND HOW THESE ARE BEING TACKLED FROM A DEVELOPERS PERSPECTIVE

Heather Donald, Head of Project Consents

April 2021

I OVERVIEW OF PRESENTATION

'The main barriers to consenting offshore wind projects and how these are being tackled from a developers perspective'

- SSER's offshore wind portfolio in Scotland
- Summary of current consenting issues
- Focus on key areas of ornithology and other sea users
- How SSE are tackling the key issues

DELIVERING OFFSHORE WIND

SSE Renewables Offshore Wind Portfolio

OPERATIONAL

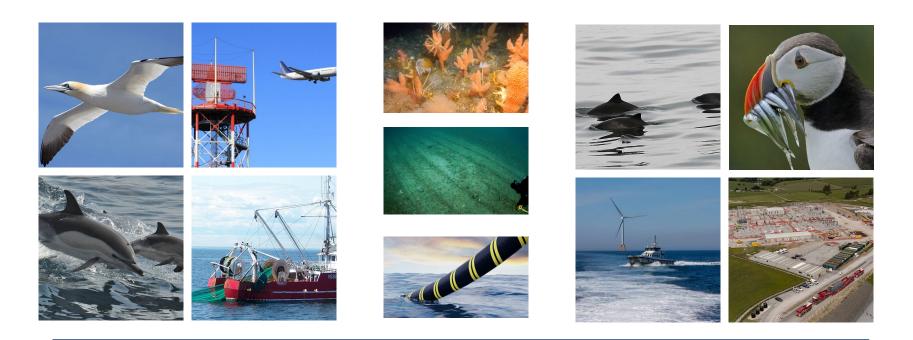
Greater Gabbard (504MW, 50%)
 Beatrice (588MW, 49%)

IN CONSTRUCTION

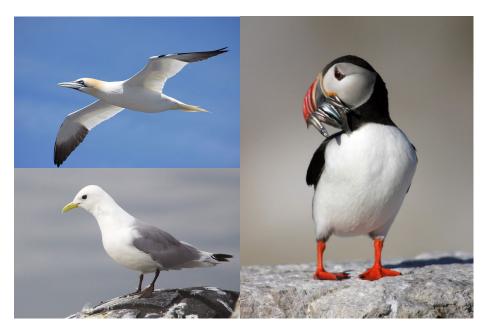
♀ Seagreen 1 (1,075MW, 49%)
 ♀ Dogger Bank (3,600MW, 50%)

IN DEVELOPMENT

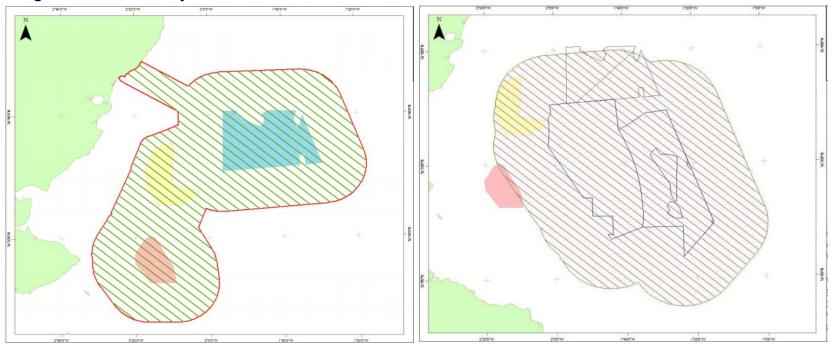
- Arklow Bank 2 (520MW)
- Berwick Bank (up to 2,300MW)
- ♀ Marr Bank (up to 1,850MW)
- ♀ North Falls (up to 504MW, 50%)
- Sraymore (c. 800MW)
- Seagreen 1A 360MW (49% SSE 51% Total)


LICENCE APPLICATION

♀ Celtic Sea Array (c. 800MW)


|| KEY CONSENTING ISSUES FOR SSE RENEWABLES

I ORNITHOLOGY AND UNCERTAINTY


- Evidence based CRM parameters
- Mitigation by design
- How much data is enough data?
- What is an acceptable threshold of effects?
- Project level derogation and compensation
- Collaboration, monitoring and research

F&T MONITORING COLLABORATION

Digital Aerial Survey

I OFFSHORE WIND AND OTHER SEA USERS

- Different stages in projects brings different challenges with fisheries interactions
- Increased cabling on the seabed and moor lines associated with floating wind will result in more interactions over time
- Co existence with fisheries is possible and there are examples of this working
- Over trawl trials
- Decommissioning plans
- Climate emergency and priorities

INCREASING RESOURCES

- Resource for updating guidance, advice, strategic marine planning and consenting process
- Improving efficiencies
- Digitisation

SSE PARTICIPATION IN GROUPS RESOLVING THESE ISSUES

- Sector Deal P2G- via OCLG and RUK
- SOWEC Barriers to Deployment Group (2021 Roadmap)
- ORJIP
- OWSMRF
- FTRAG
- MFRAG
- OWEC- via RUK
- SMEEF

Heather.Donald@sse.com

Kirsty MacArthur Director MacArthur Green Ross McGregor Principal Ornithologist MacArthur Green

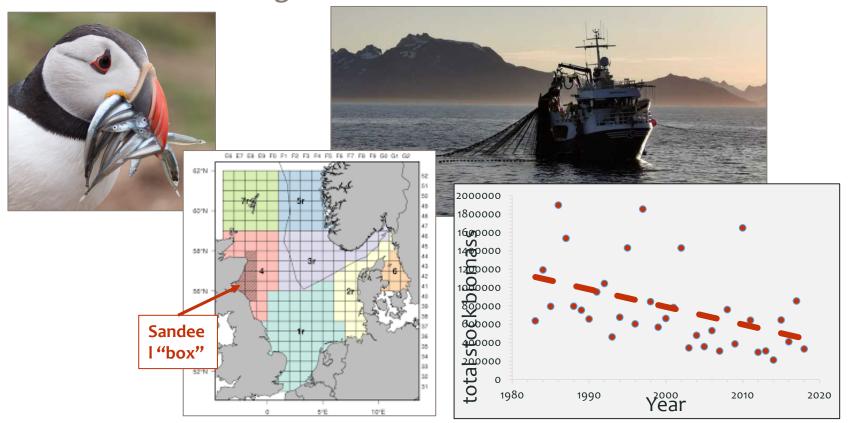
Scottish Renewables Offshore Wind Conference Breaking down barriers to deployment

Crown Estate Scotland and SOWEC: HRA Derogation - Review of seabird strategic compensation options

Kirsty MacArthur – Director Dr Ross McGregor – Principal Ornithologist

Overview

- Two scopes
 - Scope A Legal Review (CMS)
 - Scope B Seabird strategic compensation (MacArthur Green)
- Legal review
 - Habitats Regulations
 - No Alternative Solutions Test
 - Imperative Reasons of Overriding Public Interest (IROPI) Test
 - Compensation Duty

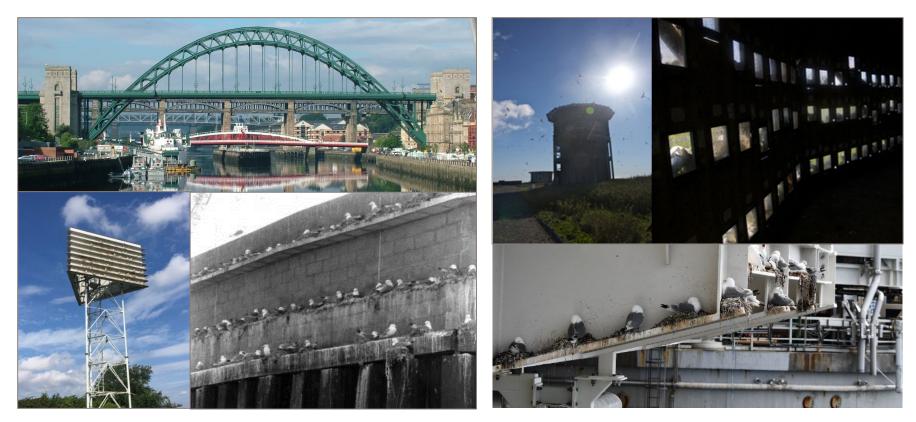


Seabird strategic compensation

No take zones for forage fish

No take zones for forage fish

Summary tables


Importance of small forage fish to seabirds

Evidence of affects on: Breeding success Overwinter survival

Species	Sandeels etc. in diet	Breeding success affected	Breeding success constrained	Sandeels etc. in winter diet	Overwinter survival constrained
Kittiwake					
Arctic skua					
Sandwich tern					
Arctic tern					
Common tern					
Puffin					
Shag					
Red-throated diver					
Common guillemot					
Razorbill					
Great skua					
Fulmar					
Lesser black-backed					
gull					
Manx shearwater					
Great northern diver					High
Great black-backed					
gull					confidence
Herring gull					
European storm-					
petrel					
Leach's petrel					
Gannet					

Artificial colonies for kittiwakes

Invasive terrestrial mammals

Invasive terrestrial mammals

Summary tables

Importance of invasive mammals to breeding seabirds

Evidence of conservation gains from eradication

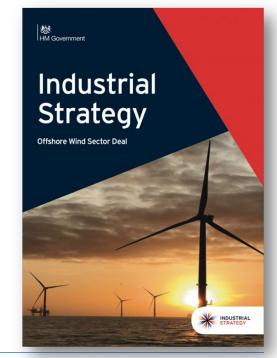
Species	Breeding or survival affected by mammals	Evidence that eradication results in conservation gains
Manx shearwater		
European storm-petrel		
Leach's petrel		
Black guillemot		
Puffin		
Razorbill		
Common guillemot		
Shag		
Arctic tern		
Common tern		111 edu
Common gull		High
Sandwich tern		confidence

Recommendations

- Strategic framework overseen by Government
 - Management under the UK Government's and Scottish Government's Seabird Conservation Strategies
- Project-based compensation closely aligned with UK and Scottish Government Seabird Conservation Strategies
- Closure of UK waters to directed fishing for sandeels
- Eradicating invasive mammal populations
 - highly effective for limited set of species
 - sustained long-term support for biosecurity measures

Garbon Neutral Organisation

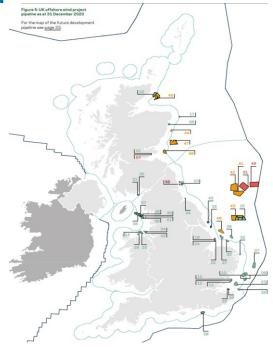
Colin Maciver Senior Development Manager (Offshore Wind) Crown Estate Scotland



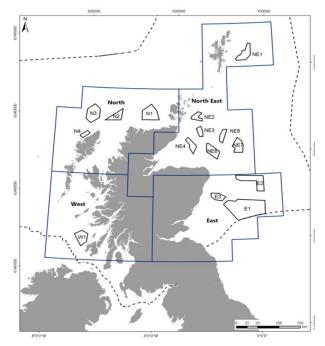
Breaking down barriers to deployment

Colin Maciver

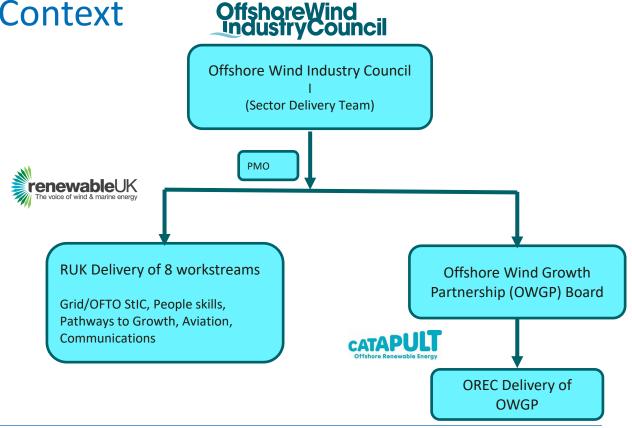
Government and Industry Aspirations


- Deliver Net Zero commitments
- Just Transition and Green Recovery
- Maintain UK/ Scotland as an attractive destination for projects and suppliers
- Delivery of shared objectives will require aligned effort.
- 2030 is the next milestone not the last one.

Sector Deal and SOWEC ambition


- Volume of capacity is the primary driver for growth of the industry in Scotland.
- Delivery timing and foreseeability is essential to secure wider benefits.
- Recent cost reduction and industry success has firmly established OSW at the forefront of a renewable-led electricity system.

Marine Planning and ScotWind Leasing

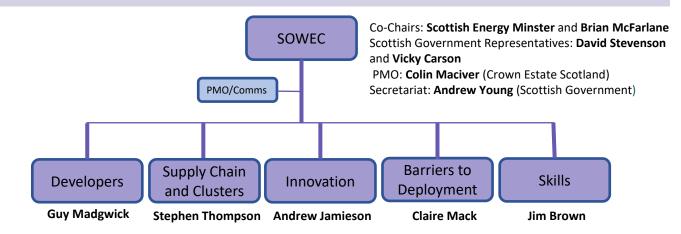

- Sectoral Marine Plan for Offshore Wind
- Target outcomes from ScotWind Leasing (SWL):
 - Maximise the contribution offshore wind can make to Scotland's Net Zero ambition
 - Deliver large capital projects which will help to power an energy transition for Scotland's economy
- Projects will be developed during the 2020s and are expected to be operational around 2030.

OWIC Role and Context

- A partnership between the sector and the UK government which is an ambitious, longterm strategy, in which offshore wind will become the backbone of the UK's power system
- Offshore Wind Industry Council (OWIC) - senior level government and industry interface forum.
- Co-chaired by BEIS minister and industry leader. Formed 2013, with 17 leading companies.

SOWEC Overview

Scottish Offshore Wind Energy Council (SOWEC)


SOWEC is an agreed working group within the SLG landscape. Operating independently, directed by the Chair and Co-Chair, adhering to the terms of reference as agreed and supported by the project management office (PMO) and Scottish Government secretariat.

Its Vision and Goals co-ordinated the Scottish response to the Offshore Wind Sector Deal

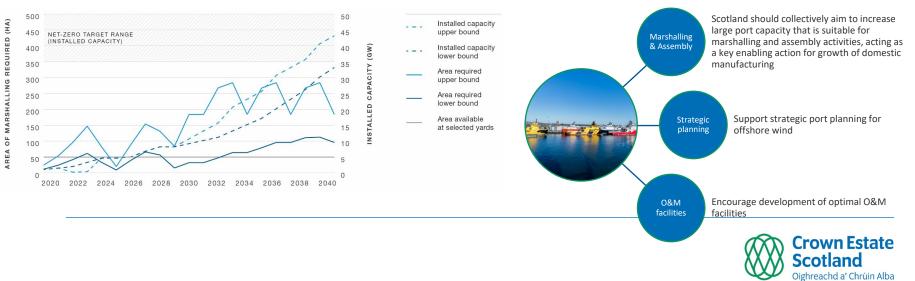
With a clear and ambitious Vision and Goals its aim is to co-ordinate a Scotland wide response to the Offshore Wind Sector Deal and to compliment the work of the OWIC workstreams in the UK by tackling any issues that have Scotland only focus.

SOWEC Structure

It comprises of 5 Groups led by key offshore wind experts.

Infrastructure

Offshore Transmission Network Review


Department for Business, Energy & Industrial Strategy

- "To ensure that the transmission connections for offshore wind generation are delivered in the most appropriate way, considering the increased ambition for offshore wind to achieve net zero. This will be done with a view to finding the appropriate balance between environmental, social and economic costs."
- Ports and Harbor Capability and Capacity
 - A study led by Crown Estate Scotland and undertaken by ARUP.

'Scotland has good technical capability to support offshore wind port functions in some, but not all locations. However, we believe that there is a significant risk that existing **port capacity will be insufficient to support the offshore wind** build-out rates required in Scottish waters to meet the UK-wide net-zero target. There are **multiple port locations which are likely to be suitable for development of additional capacity** to address this risk. This is true for both the large construction phase uses of ports, and operations and maintenance (O&M).'

Recommendation Themes:

Delivery

- Governments and industry are working together to identify and resolve barriers to deployment.
- Targets are very ambitious and the Sector Deal provides a mechanism for delivery and framework to assess success.
- The industry has come a long way in a short time, but there is still (based on the previous presentations) lots to do.

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

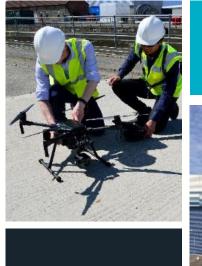
EVENT SPONSOR

EVENT SPONSOR

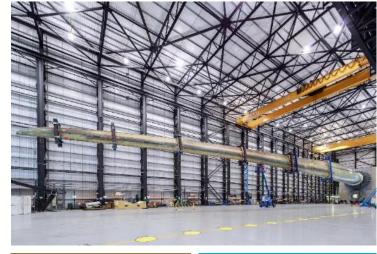
RWE

OFFICIAL MEDIA PARTNER

This session begins at 1145



Practical programmes to drive successful supply chain development organised by ORE Catapult



Isla Robb Founder, EC20 and Supply Chain and Skills Associate Director RIDG

Claire Canning Offshore Wind Growth Partnership Programme Manager ORE Catapult

ORE Catapult Supply Chain Programmes

22nd April 2021 Claire Canning, OWGP Programme Manager

The Offshore Renewable Energy Catapult

The UK's leading technology innovation and research centre for offshore renewable energy

Mission: to accelerate the creation & growth of UK companies in the offshore renewable energy sector.

- Unique facilities, research & engineering capabilities
- Bringing together innovators, industry and academia
- Accelerating creation and growth of UK companies
- Reducing cost and risk in renewable technologies
- Growing UK economic value
- Enabling the transition to a low carbon economy

The Launch Academy is a national technology accelerator programme for the offshore wind industry, focusing on near to market solutions. It is designed to enhance the UK's offshore wind supply chain, enable greater UK content and support cost reduction through innovation. Launch Academy also runs targeted, regional programmes to support local companies in their development journeys. Launch Academy North East was established alongside the national programme with further regions to follow.

F4OR Fit For Offshore Renewables

Offshore Wind Growth Partnership

Fit for Offshore Renewables

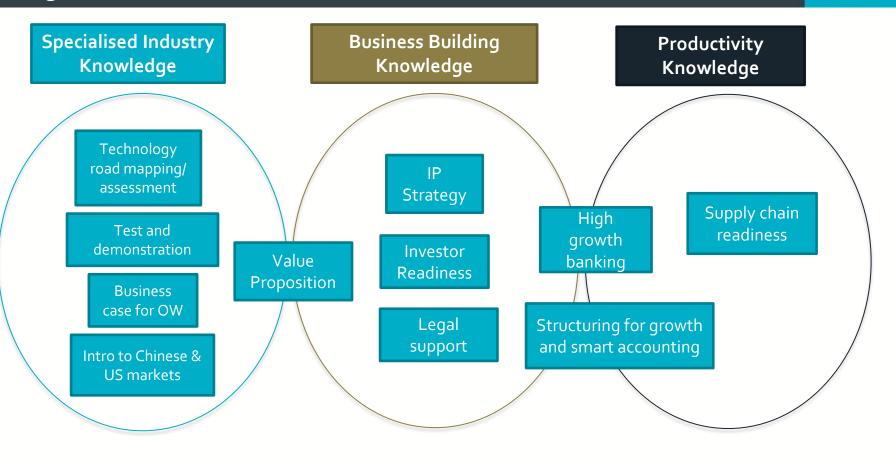
F4OR is a unique service to help the UK supply chain get ready to bid for work in the offshore renewable energy sector. We work with capable, competent and competitive UK supply chain companies to support their entry and growth in the offshore renewable energy industry. The objective of the programme is to support the development of an increasingly competent, capable and competitive UK offshore renewable energy supply chain – maximising opportunity for the UK supply chain, both domestically and globally.

Offshore Wind Growth Partnership

The Offshore Wind Growth Partnership (OWGP) is a long-term business transformation programme that has been established as part of the UK Offshore Wind Sector Deal. It will promote closer collaboration across the supply chain, implement structured productivity improvement programmes and facilitate shared growth opportunities between developers and the supply chain.

Launch Academy

Launch Academy



- Enables companies to launch new technologies and services into the offshore wind market.
- Bespoke 9-month programme that takes on 1 cohort per year (up to 10 companies)
- Innovators can select from a menu of generalist business support and bespoke sector specific modules.
- Facilitates engagement with private investors via pitches

Programme Content

Investment and R&D Grants raised

£1.9M GRANTS

were secured for technology development projects > £13M PRIVATE INVESTMENT

currently being raised by cohort companies to commercialise their technologies

Impact Inward investment and job created

VENTUS ENGINEERING ARE MOVING PART OF THEIR OPERATIONS TO THE UK

having already hired their first technical role in scotland

9 NEW HIGHLY SKILLED JOBS

have already been created since the start of the programme

Collaboration

OVER 25 MEETINGS

have been arranged between the companies and end users

two companies have secured commercial contracts with an end user/industry sponsor

Fit 4 Offshore Renewables

Fit 4 Offshore Renewables

- F4OR aimed at addressing barriers to entry for UK supply chain companies, and increasing UK content by providing sector specific support underpinned by business excellence
- Identifying "high potential" supply chain organisations, with a strategic interest in the Offshore Wind industry;
 - **Growing the Supply Chain** supporting the transition of companies from other sectors into offshore wind, by developing sector specific capability and competence;
 - Increasing Competitiveness supporting companies to improve competitiveness through innovation and continuous improvement;
 - **Raising Awareness** promoting "high potential" supply chain organisations within the industry;

F4OR Programme Overview

- Developed from the F4Nuclear Programme framework from the Nuclear Advanced Manufacturing Research Centre (NAMRC)
- ORE Catapult have adjusted the programme since its inception to be aligned to offshore renewables supply chain characteristics and business content – including manufacturing, fabrication and assembly, service, O&M, engineering design and construction
- ORE Catapult, NAMRC and Opergy have recently further improved the programme with enhancement to the sector specific modules focusing on offshore wind
- Industrial insight and feedback provided by Industrial Advisory Group to continuously improve and govern the standard of the programme

Two parts to the programme:

- **Part 1** Business Excellence Scope, content and standard set with reference to business management best practice;
- **Part 2** Sector Specific Scope, content and standard set with reference to barriers to successful entry and growth in offshore renewable energy supply chain

Phase 1 – Business Excellence

Phase 2 – Sector Specific

Key Driver of Success in	People – employee culture, development and accountability, communication, change management;	Sector Knowledge – growth, projects, technology,	Key Driver of Success in
Sector		supply chain;	Sector
Key Driver of	Strategy and Leadership – strategic awareness,	Cost Reduction and Competitiveness – value	Key Driver of
Competitiveness	planning, and deployment, management leadership;	proposition (costed), benchmarking;	Competitiveness
	Process and Operations – continuous improvement culture, KPI setting, measurement and benchmarking, supply chain management; Design and Project Delivery – design systems and control, project planning, management and delivery performance;	Capacity and Capability – capacity and capability planning; Sector Specific HSE – offshore specific competence and planning; Technical Risk Management – technology	Key Sector Competence
Tender Qualification, Effective Risk Management	Health, Safety and Environment – HSE management, responsibility and accountability, competence, planning and audit; Quality – management systems, responsibility and accountability, continuous improvement;	development planning and validation, operational technical support / management; Commercial Risk Management – commercial planning and risk allocation in contracts, warranties, service level agreements, guarantees and bonds;	

- F4OR North East Scotland Programme (2021/22) with Opportunity North East
- TIGGOR Business Support F4OR (2021/22) in North East England delivered in partnership with OWGP, North of Tyne Combined Authority and North East LEP.
- New Anglia F4OR Programme (2021/22) in Norfolk and Suffolk with New Anglia LEP.

Offshore Wind Growth Partnership

ore.catapult.org.uk

A long-term business transformation programme for the UK offshore wind supply chain

Offshore Wind Growth Partnership

Objectives

- Increased UK content in UK projects.
- Increased exports to global markets.
- Increased economic value (jobs and GVA).
- Increased UK IP embedded in supply chain.

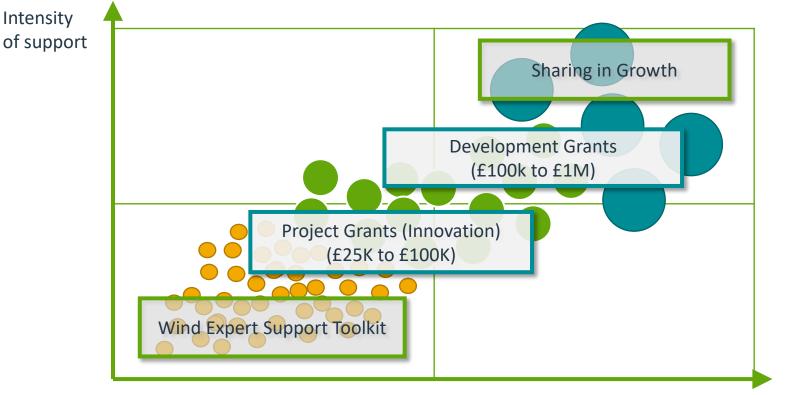
Funding

- OWIC (offshore wind developers) are funding OWGP.
- OWGP will leverage regional and national public funding

Delivery

Budget of £100m over ten years to provide:

- Business Transformation structured programmes to help companies grow.
- Grant Funding for developing new products, services, capacity and capability


OWGP provides efficient and effective delivery of business transformation programmes for the UK offshore wind supply chain.

Efficient – keeping programme management as simple as possible, we maximise the support that reaches companies.

Effective – all supported companies must provide growth forecasts and we will continue to track and report on the impact over the lifetime of the programme.

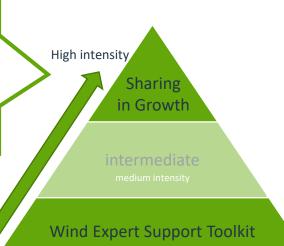
OWGP provides support to all sizes of supply chain companies with potential to grow

Company size

Offshore Wind

Growth Partnership

Business Transformation Programmes



The **Sharing in Growth** Offshore Wind (SiG OW) Programme is a high intensity intervention and aims to support increased productivity and growth of supply chain companies in the UK offshore wind sector.

Offshore Wind Supply chain companies with UK site turnover £5m+.

Delivered with experts on site supporting senior management team.

Low intensity

SHARING IN

GROWTH

WEST

Wind Expert Support Toolkit is a low intensity intervention and aims to support growth of supply chain companies entering or already embedded in the offshore wind sector.

Delivered as two to ten days specialist support from framework of delivery partners.

Current/Upcoming Opportunities

Sharing in Growth - Open NOW

- Programme to support supply chain company leadership teams to improve competitiveness. OWGP is seeking companies with ambitions for growth in offshore wind with turnovers (or expected turnovers) of between £5m and £100m.
- Flyer with more information: <u>https://owgp.org.uk/wp-content/uploads/2020/11/SiG-Offshore-Wind-Programme-Flyer-Nov-2020.pdf</u>
- Application Form: <u>https://owgp.org.uk/about/business-transformation-programmes/</u>

Wind Expert Support Toolkit – Opening in May 2021

• The next phase of WEST will be launching in May and accepting applications on a rolling basis. This is suitable for companies already active in offshore wind or potential new entrants.

Development Grants – Opening in May 2021

- The next OWGP grant funding competition will be launching in May which will be offering grants of £100K to £1M for transformative supply chain projects.
- Projects must enable a step-change in company growth and maximize export opportunities.

Find out more...

Ravneet Kaur

INNOVATION MANAGER

in 🍠

in

01670 357 699
 ravneet.kaur@ore.catapult.org.uk

Andrew Stormonth-Darling

PROGRAMME MANAGER

07741165050
 andrew.stormonth-darling@ore.catapult.org.uk

Claire Canning

PROGRAMME MANAGER

J +44 (0)141 559 7050

 ✓ claire.canning@ore.catapult.org.uk

Contact us

Email us: info@ore.catapult.org.uk Visit us: ore.catapult.org.uk

Engage with us:

GLASGOW BLYTH LEVENMOUTH GRIMSBY ABERDEEN CORNWALL LOWESTOFT PEMBROKESHIRE

ore.catapult.org.uk

Sam Mayall Director Offshore Survival Systems

Offshore Survival Systems

What we've achieved

CC III

2

GRVEY

Offshore Survival Systems

Thank you

www.offshoresurvivalsystems.com sam.mayall@offshoresurvivalsystems.com

John Giles Technical Director W3G Marine

W3GM FST ROBOT WELDING FEASIBILITY STUDY OWGP STRAND B 17/04/2021

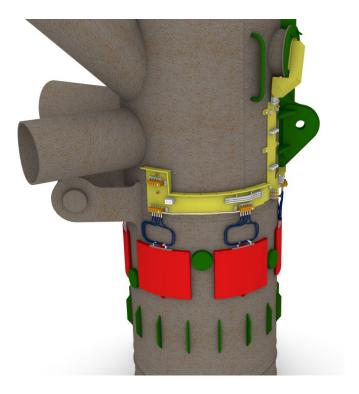
Private and confidential

Offshore trial on EA1 2019

W3G carried out a trial in 2019 on one of the EA1 jacket legs. It proved very useful in working through the procedure required to set a leg gripper

The procedure required an engineer to board the jacket and operate the inflation lines

As can be seen by the ROV views on the right, the packers were set and subsequently grouted in



Achieved ICAS qualification

- W3G have won a contract to install the gripper system on St Brieuc wind farm, for a proportion of the turbines.
- The system has undergone rigorous testing and achieved third party certification
- Typical working loads are 230t radial and 50t uplift per gripper, giving us a resistance of more than 200t uplift per leg.
- The gripper system takes a depth of 1m from the top of the pile/ bottom of the stopper, and requires a set of hoses down each leg.

SEVERAL WELDS OF PACKERS BY ROBOT



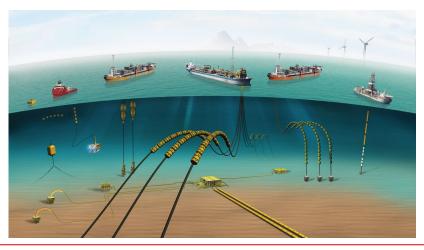
- The robots have been used with both TIG and MAG welding
- Jigs have been made to hold the packer in the orbital work holder
- Several configurations of weld design have been worked up.
- Because of the thin plates, and heavy weld required, the development has been to minimise the burn through of the sides of the weld

CONCLUSION OF ROBOT WELDS

- Welding trials have produced packers with consistent weld quality
- The robot weld cycle time is a quarter of the manual weld time.
- The robots require less physical space, and have the capability of 24 hours a day and 7 days a week production.
- W3G are looking to invest in a robotic production cell, which will enable the packer design to be used in much bigger projects.
- W3G Marine have had some enquiries for the packer system on other wind farms, in Europe and Asia.
- The robot production cell will enable these projects to be developed further.

lan Milne Sales Manager – Renewables Balmoral

BALMORAL Innovation keeps us afloat


Scottish Renewables – Offshore Wind Conference

Ian Milne, Sales Manager – Renewables

BALMORAL

Our company

- Privately owned company
- Headquarters in Aberdeen with a global supply
- Sales Office in Houston & Newcastle
- Manufacturing facilities in Aberdeen & Newcastle
- App. 300 plus employees in Aberdeen
- Agents positioned in the key market areas globally
- Europe's largest privately owned subsea test center

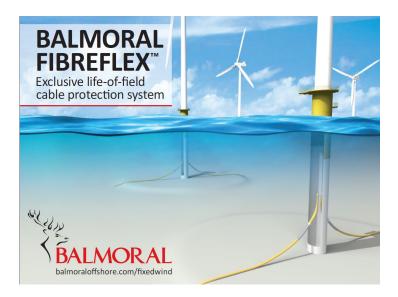
Traditionally known for serving the exploration, installation and production phases of O&G markets

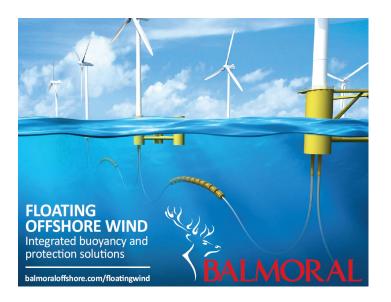
- Distributed Buoyancy
- Marine / Anchor Mooring Buoys
- Drill Riser Buoyancy
- Bend stiffeners
- Bend Restrictors
- Subsea Cable & Flowline Protection (CPS)

F4OR are helping Balmoral transition our offering to the renewable market for fixed and floating wind.

Our F4OR Journey

- Exposure to UK developers
- Understanding of the market expectations
- Embracing continuous improvement
- Energy transition from Oil & Gas to Renewables
- Enhances your brand through a recognised body
- Ensures our processes & procedures are to the correct level by benchmarking the "industry norm"
- Drives communication and information throughout all levels of the organisation
- Strategy and risk exposure a key element
- Assist you with recognising the need for cost efficiencies and innovation
- Labour intensive programme lasting ~ 12 months which required Senior Management buy in
- Audit format, led by our HSEQ Manager
- Some improvement suggestions did not meet with our business model
- Initial lack of understanding of our existing market and appreciation of existing processes / standards




Fit For Offsho Renewables

THANK YOU for your attention

lan Milne Sales Manager – Renewables ian.milne@balmoral.co.uk +44 (0) 7525 837732 acturing

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 1300

ORGANISED BY

Ministerial Address

The Rt Hon Kwasi Kwarteng MP **Secretary of State for Business**, **Energy and Industrial Strategy**

EXHIBITION SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSO

DEME

Fred, Olsen Renewables

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

Crown Estate Scotland

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OW

EVENT SPONSOR

SDIC **SDIC** Red Rock Power Limited

EVENT SPONSOR

EVENT SPONSOR

RWE

OFFICIAL MEDIA PARTNER

This session begins at 1415

Delivering all of our ambitions: accelerating the pace for economic and climate recovery

SIDE EVENT SPONSOR

EVENT SPONSOR EVENT SPONSOR EVENT SPONSOR

EVENT SPONSO

Red Rock Poy

EVENT SPONSOF

Orsted

Fred, Olsen Renewables

Adam Morrison Project Director – Moray West Offshore Wind Farm Ocean Winds Co-Chair of the Offshore Wind Industry Council & UK Country Director Vattenfall

Richard Britton Global Offshore Development Director ScottishPower

April 2021

Drawing on Iberdrola's experience in other markets, what more can the UK/Scotland do to speed up offshore deployment

Iberdrola – an introduction

Iberdrola's building blocks: social market economy and a proactive contribution to UN Sustainable Development Agenda...

A **Global leader** in the utilities sector:

UK – 100% renewables production; Transmission & Distribution networks

Europe (exc UK) – Leading energy company in Spain and a large, growing presence across the continent

USA – Energy distribution in North-East and the country's 3rd highest wind producer

Mexico – Leading electricity producer

Brazil – Energy leader

APAC - Targeting new opportunities

... fully integrated in the company's strategy and corporate governance system

Iberdrola Offshore - Global Pipeline

Iberdrola's experience across global markets and sharing best practise is critical to its success:

Consenting – Ideally a single consent in a defined period. Certainty of process is essential in a none competitive environment.

Cumulative Impact – Ensuring lessons learned globally are appropriately integrated into national policy

Seabed Rights – Early exclusivity and certainty ensures significant and accelerated investment from developers

Community Benefit – Substantial and positive contribution to local economies, causes and the creation of additional jobs

Wind Turbines – Cutting edge technology. Enforced early limits lead to challenges on financial models and inevitable amendments

Transmission Assets – Clear certainty on regulatory regime allows both a defined consenting process and construction planning

Site Characteristics – Flexibility in layout facilitates optimised consenting, construction & operational strategies

Land Rights – Justified compulsory acquisition rights keep project costs down and remove ransom strips

Defined, time bound and non-competitive consenting process

Clear grid strategy that meets project life cycle

Regular price auction

Zoe Barnes Strategy Manager Quaybridge

Next Generation Offshore Wind: Socio-economic development in Scotland Zoe Barnes

April 2021

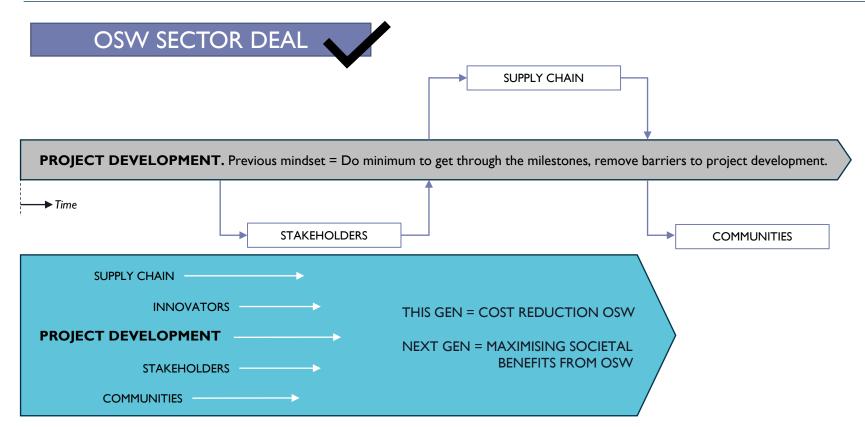
Quaybridge

Offshore wind as a driver of positive change in the energy system and wider economy.

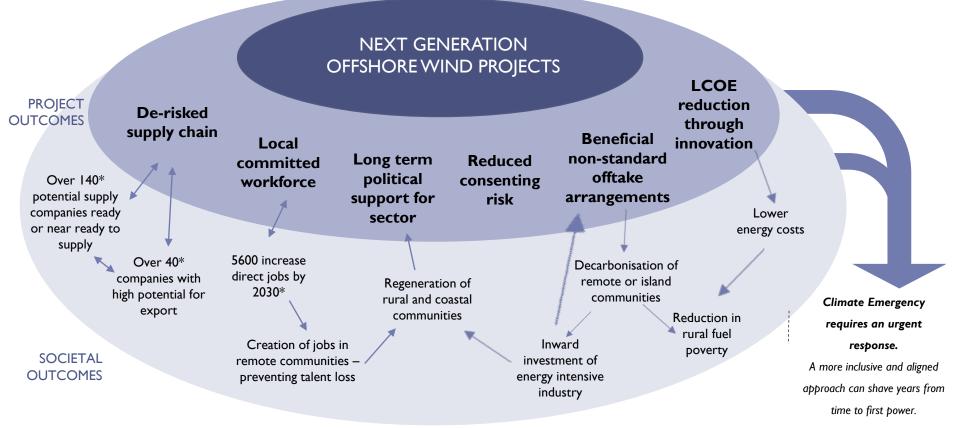
MISSION

A fresh approach and new investment to develop and deliver next generation offshore wind projects.

VALUES


- Entrepreneurial energy
- Technical quality
- Commercial maturity
- Learning from the past
- Ready for the future

WE DEVELOP NEXT GENERATION OFFSHORE WIND PROJECTS


8

Time to do things differently

The prize- if we get this right

Quaybridge

220

Our strategy: Next Generation Offshore Wind

TO DELIVER OUR VISION WE FOCUS ON FOUR KEY AREAS... ... DELIVERED VIA A SERIES OF INITIATIVES Supply chain intervention **SUPPLY CHAIN** DEVELOPMENT **Export** initiatives **VISION** Alternative offtake initiatives Offshore wind as a Floating wind cost reduction INNOVATION driver of positive Innovation and new tech support change in the energy system and wider Skills transition initiatives SKILLS DEVELOPMENT Early years STEM support economy. Enabling diversity in the workforce COMMUNITY Community funding programmes **INITIATIVES** Local community initiatives

LEADS TO STRONG AND EFFECTIVE STAKEHOLDER RELATIONSHIPS

ENABLES EXPLOITATION OF LATEST TECHNOLOGY

A BROADER DEFINITION OF ECONOMIC DEVELOPMENT

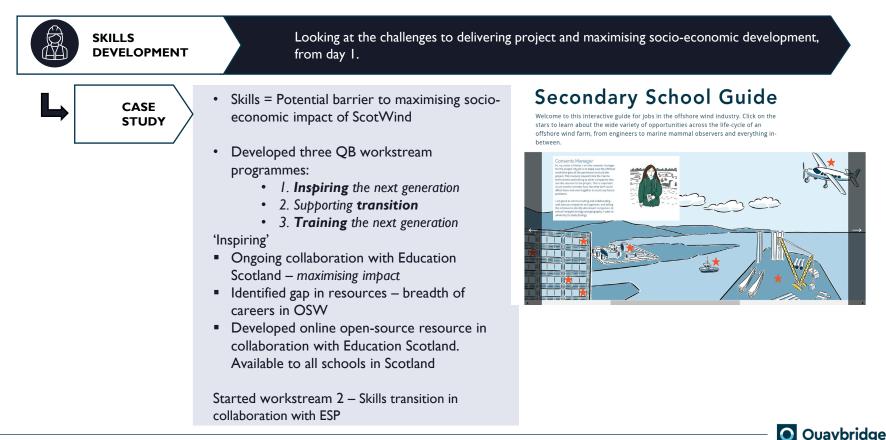
STRICTLY CONFIDENTIAL

Example 1: Global supplier showcasing

Building supply chain experience in overseas markets – de-risks Scotwind projects.

.Z

Example 2: Offshore Survival Systems



💽 Ouaybridge

- Multi-million pound company working with a range of large developers and partners.
- Due to launch first commercial product this summer

STRICTLY CONFIDENTIAL

Example 3: STEM Careers Support

Conclusions

Σ

Climate emergency demands an urgent response. Time to do offshore wind development differently.

Economic development is not just about the supply chain. The impact created through skills, innovation and communities can be as significant regionally.

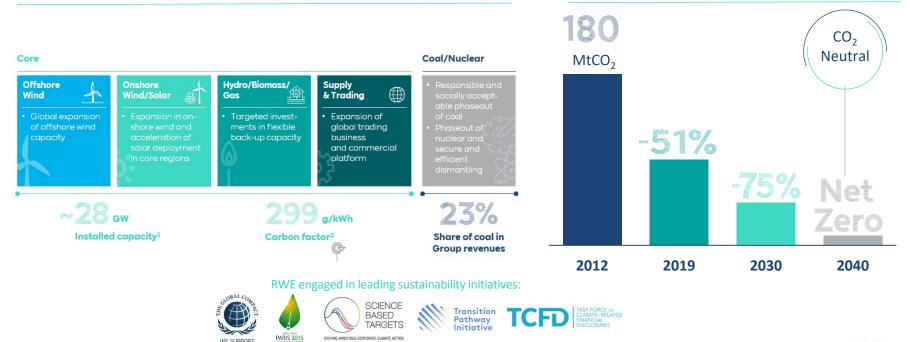
Engage deep and early with stakeholders, supply chain and communities to really understand needs.

Co-create opportunities locally to achieve alignment right from the start.

Contribute to wider national policy objectives – it's time offshore wind steps up to play a full role in society.

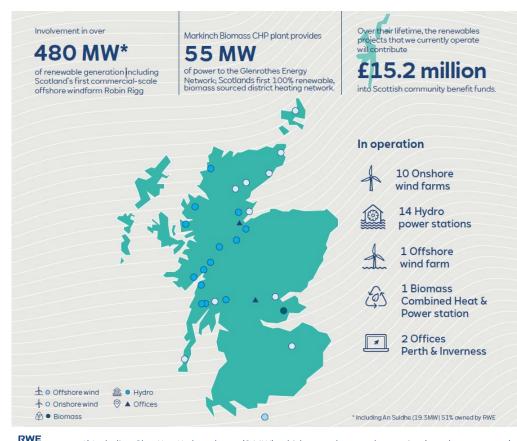
Thank you for your time Contact: zoe.barnes@quaybridge.com

Chris Willow Head of Floating Wind Development RWE Renewables


Taking concrete steps into floating wind

Thursday 22 April

Chris Willow – Head of Floating Wind Development

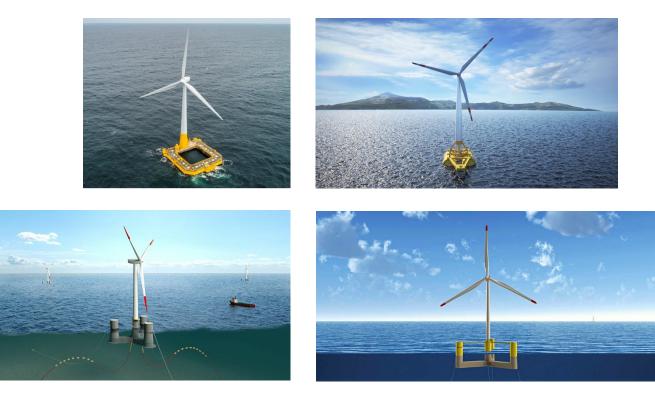

Following the integration of innogy Renewables and E.ON Climate & Renewables, RWE now stands as one of the largest renewable players in the world 20,000 employees, active in 20 countries

A clear focus on growth and a driving force behind the energy transition..

A clear goal to be CO2 neutral by 2040

RWE in Scotland

In Scotland, we are involved in 480 MW of installed renewable capacity across 27 sites¹, with offices in Perth and Inverness.


Includes Scotland's first commercial-scale offshore wind farm, Robin Rigg in the Solway Firth (174 MW)² and 55 MW biomass combined heat and power (CHP) plant at Markinch, home to the Glenrothes district heating network.

Scotland is a key market for RWE.

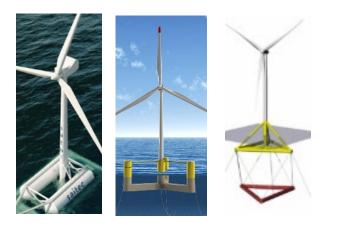
We are developing a number of onshore wind projects.

Via ScotWind, we aim to capitalise on our vast experience in fixed offshore and involvement in a number of floating wind demonstration projects around the world.

Concrete foundations as a opportunity for the Scottish supply chain

Concrete foundations as a opportunity for the Scottish supply chain

Benefits


- No existing supply chain elsewhere
- Suitable infrastructure
- labour intensive
- Exportable know-how

Uncertainties

- Potential for competitiveness?
- Important knowledge gaps?
- Scottish supply chain capability?

Concrete foundations as a opportunity for the Scottish supply chain

Demo portfolio

Scope

- Review of the designs, techniques and materials
- Analysis Scottish supply chain
- Recommendations for next steps

Thank you for your attention

Sarah Pirie Head of Commercial Red Rock Power Limited

Supporting offshore deployment in Scotland: future regulatory changes

22 April 2021

730

MWs have been successfully deployed in Scotland since the 2009 out of c.5GW of consented capacity.

10.5

GWs of offshore wind have been deployed in the UK by 2020. Expected to increase to 27.5 GW by 2026.

Approximately 2.5 GW will come from Scottish projects all currently in construction. 9.2

GWs offshore wind have been allocated CfDs in the UK compared to c2.4 GW in Scotland.

"It has never been hard to tell the difference between a Scotsman with a grievance and a ray of sunshine." PG Wodehouse

Future offshore wind deployment in Scotland

Current Projects

Fools look to tomorrow, wise men use tonight

Current construction activities on Scottish sites expected to be completed in 2023.

Up to four Scottish projects expected to be eligible for AR4 based on current timescales.

The TNUOS charging system penalises the competitiveness of Scottish projects competing for CfDs. In the short term this can be addressed through having sufficiently high cap for the auction and adopting a soft cap approach.

ScotWind Projects

Failing means yer playing...

Delays to ScotWind compared to Round 4 projects potentially place new Scottish projects at a disadvantage in terms of delivery timescales combined with higher risks.

How do we ensure Scottish projects can successfully compete?

- Consenting processes, resources and planning
- Reinforce the needs case for offshore wind
- Long-term TNUOS reform

Beyond ScotWind... What's fur ye will no go by ye

Setting out the long-term ambition for offshore wind in Scotland

- Future seabed releases
 - Scottish Marine Plan
 - Crown Estate Scotland processes
- Grid planning and constraints
- Building a globally competitive supply chain

Focus for success

Lang may your lum reek...

- Create an ongoing and long-term route map for offshore deployment in Scotland starting with AR4 to secure long-term investment and supply chain
- Enable long-term gid planning to remove barriers to deployment
- Use the advantages of devolved matters to accelerate deployment and reduce risk e.g. planning policy, consenting control, Crown Estate Scotland
- Concerted action on grid charging to ensure a level playing field for offshore projects with geographic diversification of supply and improved competition for consumers

WITH THANKS TO OUR SPONSORS & SUPPORTERS

EVENTS CALENDAR 2021

BOOK NOW scottishrenewables.com/events

ORGANISED BY

scottish renewables IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE

EXHIBITION SPONSOR

Orsted

PROGRAMME SPONSOR

SIDE EVENT SPONSOR

EVENT SPONSOR

EVEN

EVENT SPONSOR

EV

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

EVENT SPONSOR

OFFICIAL MEDIA PARTNER

X Fred. Olsen Renewables

SDIC () Red Rock Power Limited

