

IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE, EXHIBITION & DINNER 28 & 29 JANUARY 2020 GLASGOW

SDIC

DEME

Claire Mack

Chief Executive Scottish Renewables

Paul Wheelhouse MSP

Minister for Energy, Connectivity & the Islands Scottish Government

Bringing the economic benefits home

Jim Smith Managing Director SSE Renewables

Benj Sykes UK Country Manager – Offshore Ørsted

Offshore wind: reaping the economic benefits

Sector deal and 40GW target

Orsted

Benj Sykes Tuesday 28 January 2020

UK and Scotland legally commit to reducing greenhouse gas emissions to net zero, with 40GW of offshore wind by 2030

Climate Change Act 2008 (2050 Target Amendment)

Scotland (+ Add to myFT

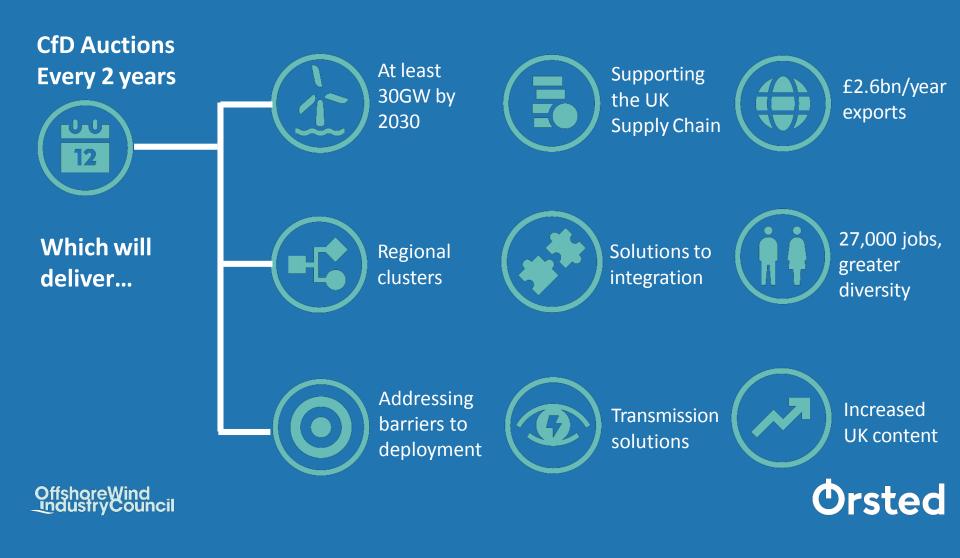
Sturgeon puts climate change top of Scotland agenda

SNP leader reiterates demand for second independence vote

© Andrew Cowan/Scottish Parliament

Powering a competitive global economy

2015 CfD Auction Round 1


£120

East Anglia Neart NG 2017 CfD Auction Round 2

£57.50

Hornsea 2 Moray East £39.65 2019 CfD Auction Round 3* Dogger Bank / Sofia

Four core strands of activity

A	Collaborating for Growth	Enhanced engagement b supply chain.			
В	Business Competitiveness	An intensive structured business improvement programme.			
С	Building New Capacity	Increasing the breadth of the UK supply chain by attracting cross-sector companies.			
D	Supply Chain Futures	Developing growth based property.	l on new UK intellectual		

Ørsted has grown a significant domestic supply chain

MPM North West Marine construction	LDAdesign Design consultor	Robertson Gr ncy Civil engineering/c				c Ca sultancy Geoscience & ge	sthie Associates otechnica engineering	JDR Cables L surveys Array cables	Tekmar Energ Cables protection syste
HiDef Aerial Surveying	DeepOcean Group Cable installation	Global Maritime Consultant Marine warranty surveyors	Systems (ESS)	Gulf Marine Services (GMS Accomodation Jack-up vess		Briggs Marine Offshore operations	Allied Exploration Geotechnics	RC	dus Seabed Intervention L Winspection & EOD service
S Wind UK upplier of turbine towers			Boulder clearanc	e			Site investigation	\$/	Procomm Site Servic Site offic
ower Systems Design olutions Ltd naineering services									Wilton Engineerin Transition piec
leil Martin Group									Mainpri Surveys, vessels (gua
ames Fisher Offshore operations.									Specialist Mari Consultants L Offshore & vessel inspecti
eck Construction				7					Rix Marii Vessels (CT
irst Subsea able protection system								s	iemens Gamesa Renewab Energy (SGR
Volkerinfra Onshore export cable installation									Wind turbine OEM, blac manufacturir
Granada Material Handling Davit cranes			134						Hobson & Port Civil engineerin constructio
IV & dynamic reactive compens echnology & engineering	ation								Carlbom Shippin Shipping age
ir Traffic Control Services onsulting-radar mitigation									AMS No D Directional drillin
able inspection									CallMi Offshore scaffoldi
inveys, vessels, offshore logistic raneking	\$		I	N 🕴 🚺					Mott MacDone Engineering consultan
rane services				() () () () () () () () () ()				Stakeholderman	Counter Conte agement & communicatio
GB Scaffolding Ltd								Stakeholder man	Siemens Meter
urbine Transfers essels (CTV)					•				Meter
ivil engineering/construction									Fransformer & fire enclosu Sealar
rysmian may Cable				•					WTG installat
E Grid Solutions				•	• •				Gardli Offshore surve
oyal Haskoning DHV wironmentol consultancy				• •					our Beatty Civil Engineeri nore substation constructi
each Engineering & Iving Services (REDS)									Brown & May Marin Surveys & EIA consultan
ortakabin emporary offices				-					UXO risk manageme
Alcour Maclaren				. 27/					6 Alpha Associate
tkins (Bristol)			1	~_////					Consenting & licensit
Ixford Archaeology									Offshore operatio Red7 Mari Offshore constructi
R Wallingford urveys & engineering									Offshore construction
SA Latchways PE									Raytheon Syster Radar mitigati
Igro Irveys, inspection									Apr Surve
nd monitoring PS Energy				survey Geotechnica	Marine warran	ty Logistics	Theta Services Marine warranty surveyors	Guod Planning consultants	H&Askha Cable pulling & jointi
IA consultancy farine Designs Spectru		support Red Penguin Marine	MHI Vestas I	/ technical consult	ancy BPP Technicial Solutions	London Offshore	WSP	J Murphy's & Sons	The Environmer Partnersh

Orsted

Developers are keen to work with innovative Scottish companies For example, Ørsted has partnered with Pict Offshore to develop the Get Up Safe (GUS) system

North West and North Wales 8.

With 12 offshore wind farms (approx. one third of UK offshore wind capacity), the North West North Wales region boasts physical infrastructure and ports, a growing industry base and local supply chain, a skilled workforce and established apprentice schemes at local colleges. Collaborative supply chain activity is facilitated via The Offshore Energy Alliance (OEA) and the region has been identified by The Crown Estate as a key area for further offshore wind development. O

innogy

Orsted SIEMENS Gamesa

7. **Celtic Sea Cluster**

Founded on existing offshore renewable and marine businesses and their supply chains, the cluster draws on regional offshore renewables R&D excellence and technology transfer from the fixed offshore wind, wave and tidal, and oil and gas sectors.

VATTENFALL

The Solent is a leader in the field of composites and the region's companies have been successful in applying this expertise to the offshore wind industry, from MHI Vestas Offshore Wind producing 80-metre blades at their facility on the Isle of Wight. to Seacat Services and South Boats manufacturing vessels for the industry.

/////

East Anglia 5.

East Anglia aims to produce 8.4GW by 2032. It has world class physical infrastructure, suitable ports, an established supply chain and a skilled workforce. The All Energy Industry Council will oversee the regional cluster development.

Offshore Wind Sector Deal The development of UK clusters

The Offshore Wind Sector Deal committed industry to work alongside local government to help bolster the UK's regional offshore wind 'clusters'. Clusters are a collaboration between developers and the regional supply chain. public sector and education bodies. The ambition is to increase the industry's productivity, competitiveness and innovation, while helping to grow these coastal economies.

Key specialisms Innovation Advanced Fabrication and business Manufacturing incubation Specialist Subsea Decommissioning Engineering Innovation Operations Testing and Construction and Maintenance Demonstration

With almost 17GW of projects operational or under construction, DeepWind already has the established ports infrastructure, fabrication and construction supply chain to support the new ScotWind leasing round. It also has recognised significant expertise in the areas of subsea engineering and floating offshore wind. SSe equinor VATTENFALL - 2 DeepWind KOWL 2. Forth and Tay Offshore With 2.5GW of projects in development and led by a close collaboration of local authorities and developers. Forth and Tay seeks to build on wellestablished strengths to deliver a growing and internationally-recognised offshore energy supply chain. SDIC (3.

DeepWind (North Scotland)

1.

////.

North East England

Home to the UK's first offshore wind farm in Blyth in 2000, the region now has a world class offshore wind supply chain. The cluster, driven by NOF, is innovative and collaborative with key strengths in subsea technologies, heavy engineering and fabrication.

4. Humber

A well-established cluster, the Humber is building on its powerful maritime

history to harness the 14GW generated by wind farms offshore from Hull and Grimsby. Aura brings together the stakeholders in the region through a strong collaboration, led by the University of Hull, supported by regional government, industry, educational bodies and others.

Orsted SIEMENS Gamesa

Orsted

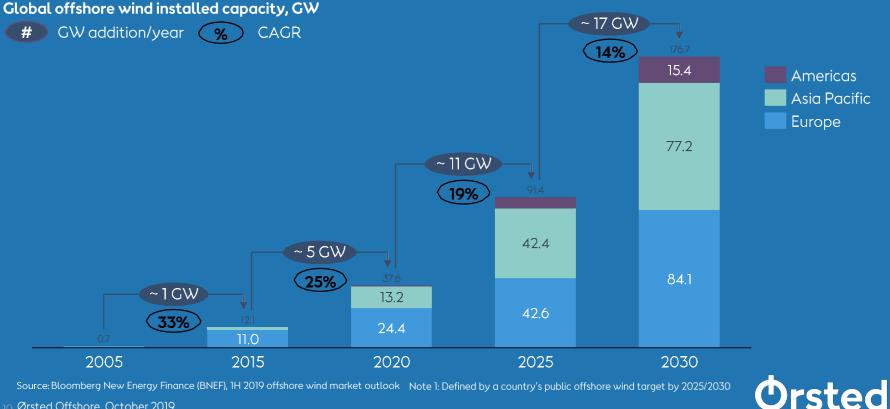
Offshore Wind Sector Deal The development of UK clusters

The Offshore Wind Sector Deal committed industry to work alongside local government to help bolster the UK's regional offshore wind 'clusters'. Clusters are a collaboration between developers and the regional supply chain, public sector and education bodies. The ambition is to increase the industry's productivity, competitiveness and innovation, while helping to grow these coastal economies.

1. DeepWind (North Scotland)

With almost 1.7GW of projects operational or under construction,

DeepWind already has the established ports infrastructure, fabrication and construction supply chain to support the new ScotWind leasing round. It also has recognised significant expertise in the areas of subsea engineering and floating offshore wind.


2. Forth and Tay Offshore

With 2.5GW of projects in development and led by a close collaboration of local authorities and developers. Forth and Tay seeks to build on wellestablished strengths to deliver a growing and internationally-recognised offshore energy supply chain.

Let's build a world leading supply chain

Source: Bloomberg New Energy Finance (BNEF), 1H 2019 offshore wind market outlook Note 1: Defined by a country's public offshore wind target by 2025/2030

10 Ørsted Offshore, October 2019

Rainer Broering Industrialization and Supply Chain Strategy Leader GE Renewable Energy

Tweet @ScotRenew #SROFFSHORE20

Claire Mack Chief Executive, Scottish Renewables Jim Smith Managing Director, SSE Renewables **Benj Sykes** UK Country Manager - Offshore, Ørsted **Rainer Broering** Industrialization and Supply Chain Strategy Leader, GE Renewable Energy Tweet @ScotRenew

Market outlook: Scotland, UK and the world

Fabrice Leveque Senior Policy Manager Scottish Renewables

David Pratt Head of Planning & Strategy Marine Scotland

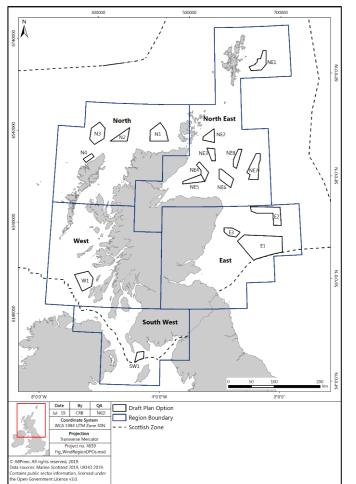
Draft Sectoral Marine Plan for Offshore Wind Energy

David Pratt Head of Marine Planning and Strategy

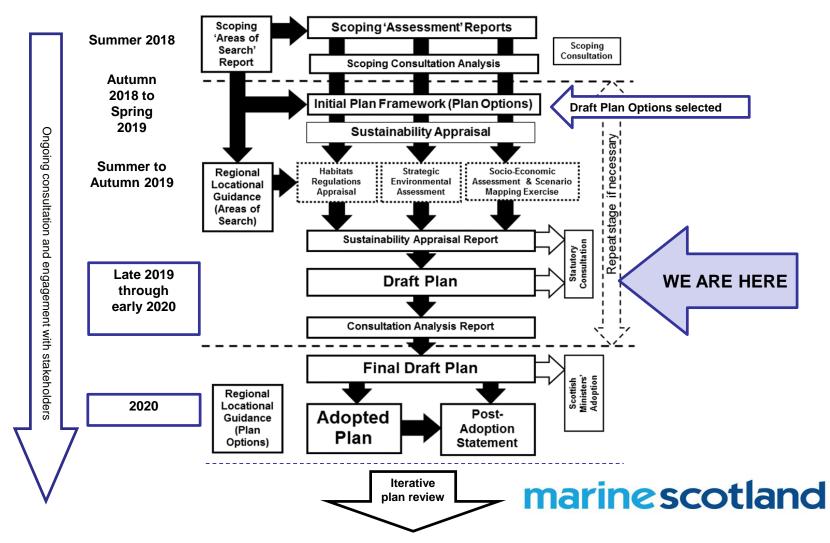
Marine Scotland and The Crown Estate

marinescotland


Marine Planning and Licensing Authority

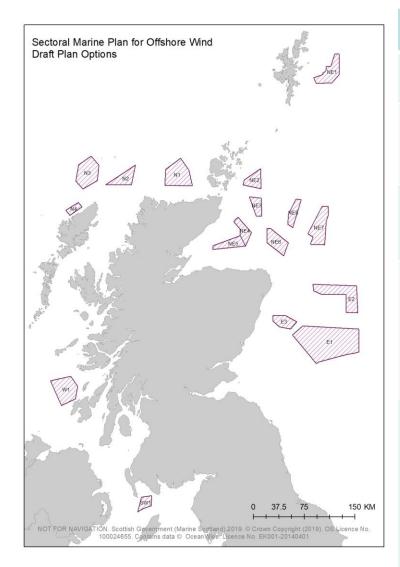

Seabed Leasing Agency

Scottish Marine Planning System



Draft Sectoral Marine Plan for Offshore Wind Energy 2019

- Draft Sectoral Marine Plan for Offshore Wind Energy
 - https://bit.ly/36Gi5tX
- Offshore Wind Policy Statement
 - <u>https://bit.ly/36CpURw</u>
- Both will run from 18
 December 2019 until <u>25</u>
 <u>March 2020</u>


The planning process.....

Consultation Details

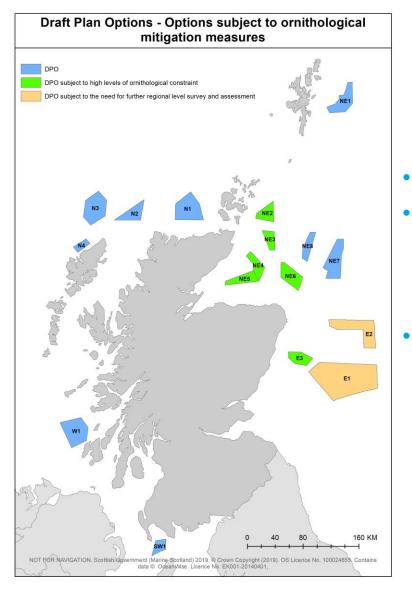
- Draft Sectoral Marine Plan for Offshore Wind Energy
- Strategic Environmental Assessment
- Habitats Regulations Appraisal
- Social and Economic Impact Assessment
- Sustainability Appraisal
- Partial assessments
 - Equalities Impact Assessment
 - Islands communities Impact Assessment

Inviting comments on all of these and the individual DPOs

17 Draft Plan Options

Total option area = $14,657 \text{ KM}^2$ (73.27 GW)

SEA identifies a mitigation measure to limit the total scale of development under this plan to **10** GW

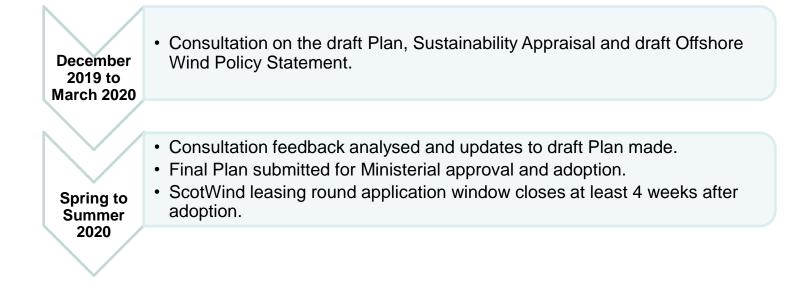

Development scenarios for assessments are set at ${\bf 3},\,{\bf 5}$ and ${\bf 10}~\text{GW}$

<u>The Plan seeks to minimise</u> the potential adverse effects on other marine users, economic sectors and the environment resulting from further commercial-scale offshore wind development; and

<u>The Plan seeks to maximise</u> opportunities for economic development, investment and employment in Scotland, by identifying new opportunities for commercial-scale offshore wind development, including deeper water wind technologies.

Region	DPO	Area (km²)	Potential installed capacity (GW)	Realistic maximum development scenario for DPO (GW)	Realistic development as percentage of site area	Regional Low Scenario (GW)	Regional Central Scenario (GW)	Regional High Scenario (GW)
	E1	3816	19.1	3	16%			
East	E2	1287	6.4	2	31%			
East	E3	474	2.4	1	42%			
	Sub-total	5577	27.9	6		1	2	3
	NE1	776	3.9	2	52%			
	NE2	464	2.3	1	43%			
	NE3	339	1.7	1	59%			
	NE4	440	2.2	1	45%			
North-east	NE5	496	2.5	1	40%			
	NE6	699	3.5	2	57%			
	NE7	1027	5.1	3	58%			
	NE8	401	2.0	1	50%			
	Sub-total	4641	23.2	12		1.5	3	4.5
	N1	1163	5.8	2	34%			
	N2	560	2.8	2	71%			
North	N3	1106	5.5	2	36%			
	N4	200	1.0	1	100%			
	Sub-total	3030	15.1	7		1	2	3
West	W1	1107	5.5	2	36%			
WESL	Sub-total	1107	5.5	2		0.5	1	2
South-	SW1	292	1.5	1	68%			
west	Sub-total	292	1.5	1		0.3	0.6	1
Total 14646 73.2			28		4.3	8.6	13.5	
Scaled back in national scenario to: 3 5								10

Plan-level Mitigation


- Blue Standard DPO
- Green Subject to high levels of ornithological constraint (previously temporal mitigation)
- Orange Subject to regional level survey and assessment


Crown Estate Scotland - ScotWind leasing

- 10 GW = 2000 KM²
- Due to nature of leasing and development processes and likely attrition rates, CES will offer a larger area for Option Agreements to achieve 10 GW capacity
- This has been calculated to 8,600 KM² of seabed for Option Agreement.
- Total generating capacity arising from leases awarded in this cycle of ScotWind should not exceed 10GW nationally nor the realistic development scenario assessed for a given DPO.
- No more than 8,600 KM² or 10 GW

Next Steps (Short term)

What will happen in the medium to long-term?

Thank you

Draft Sectoral Marine Plan for Offshore Wind Energy

- <u>https://consult.gov.scot/marine-scotland/draft-sectoral-</u> <u>marine-plan-for-offshore-wind/</u>
 - <u>18 December 2019 25 March 2020</u>

– <u>https://bit.ly/36Gi5tX</u>

Offshore Wind Policy Statement

<u>https://consult.gov.scot/energy-and-climate-change-directorate/draft-offshore-wind-policy-statement/</u>

- <u>18 December 2019 - 25 March 2020</u>

- https://bit.ly/36CpURw

For more information about sectoral marine planning please visit: <u>www2.gov.scot/Topics/marine/marineenergy/Planning</u>

Or contact the team at: SectoralMarinePlanning@gov.scot

John Robertson Head of Energy & Infrastructure Crown Estate Scotland

Mandy Gloyer New UK Offshore Sites Manager ScottishPower Renewables

Scottish Renewables Offshore Wind Conference 2020

Mandy Gloyer New UK Sites Manager (offshore) ScottishPower Renewables

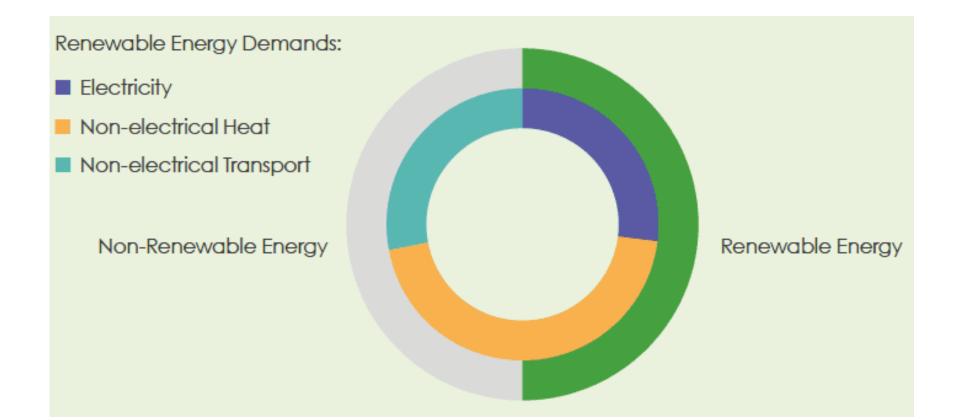
www.scottishpowerrenewables.com

East Anglia Zone

ScottishPower Renewables' Decade

2020 UK Leasing

ScotWind	Round 4
Up to 10GW	At least 7GW
Sectoral Marine Plan DPOs, maximum leasable areas in each	4 bidding areas, max 3.5 GW in each
No maximum award per organisation	Maximum 3 GW per bidding entity
Max 5 project bid submissions	Max 5 project 'groups' with primary and variants
Large areas over 60m water depth	All areas below 60m water depth
Max Applicant Valuation, focus on project value	Multi-cycle bidding, highest bid/km ² wins
Supply Chain Development Statement	400MW-1.5 GW project size



RENEWABLES

Status	UK (GW)	Scotland (GW)
Operational	8.5	0.9
In construction	2.9	1.2
Consented	11.1	3.1
In Planning/on hold	10.6	2.6
Total pipeline	33.1	7.8

2020 UK Leasing Approximate Timelines

https://www.gov.scot/publications/scottish-energy-strategy-future-energy-scotland-9781788515276/pages/5/

ScotWind Leasing Seabed leasing for new offshore wind farms

https://www.crownestatescotland.com/media-and-notices/

Fabrice Leveque Senior Policy Manager, Scottish Renewables **David Pratt** Head of Planning & Strategy, Marine Scotland John Robertson Head of Energy & Infrastructure, Crown Estate Scotland Mandy Gloyer New UK Offshore Sites Manager, ScottishPower Renewables Tweet @ScotRenew

Supply chain: opportunities for growth

Nick Sharpe

Director of Communications & Strategy, Scottish Renewables

Andrew MacDonald

Programme Director, Offshore Wind Growth Partnership

Paul O'Brien

Senior Development Manager, DeepWind

Allan Taylor

Head of Renewables Supply Chain, Department for Business, Energy and Industrial Strategy

Isla Robb

SE Wind Lead, representing Forth & Tay Offshore

Morag Watson Director of Policy, Scottish Renewables

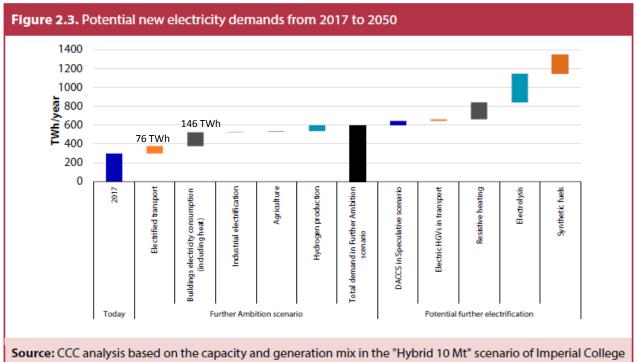
Tweet @ScotRenew #SROFFSHORE20

Power from the seas: offshore wind's place in Scotland

Claire Mack

Chief Executive Scottish Renewables

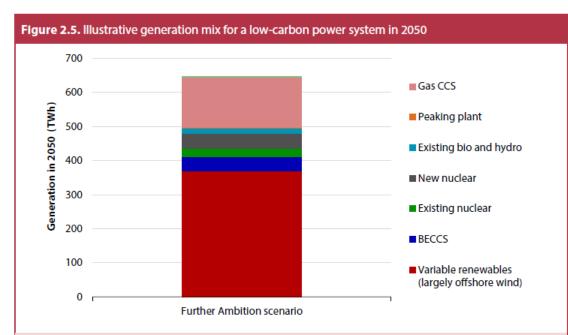
Professor Keith Bell Committee on Climate Change


Scottish Renewables Offshore Wind Conference

Power from the seas: offshore wind's place in Scotland

Keith Bell

Electrifying transport and heat in the UK



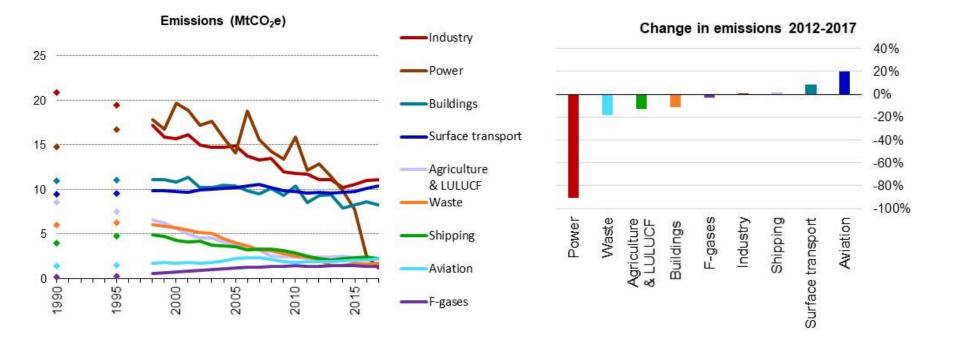
(2018) Analysis of alternative heat decarbonisation pathways.

Notes: Electric HGVs in transport are hydrogen fuelled vehicles switching to electricity.

Sources of the UK's electricity in 2050?

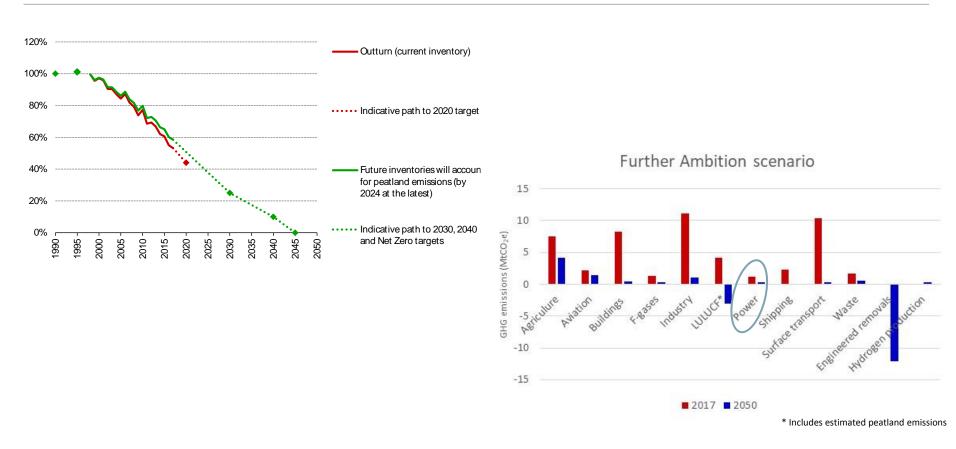
Source: CCC analysis based on the capacity and generation mix in the "Hybrid 10 Mt" scenario of Imperial College (2018) *Analysis of alternative heat decarbonisation pathways*.

Notes: The role of gas CCS in providing firm power is illustrative and could be replaced by nuclear power or alternative renewable technologies, reducing residual emissions.


- The CCC's scenarios involve around a doubling of electricity demand with all electricity produced from low-carbon sources
 - (~50% low carbon electricity today)
- That could for example require **75 GW of** offshore wind in 2050
 - compare to 8 GW today and 40 GW by 2030 as in Conservative manifesto
- 75 GW of offshore wind would require up

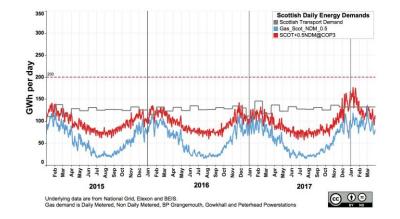
to 7,500 turbines

• These could fit within 1-2% of the UK seabed, comparable to the area of sites already leased for wind projects by the Crown Estate



Reaching net-zero emissions in Scotland Emissions in Scotland today



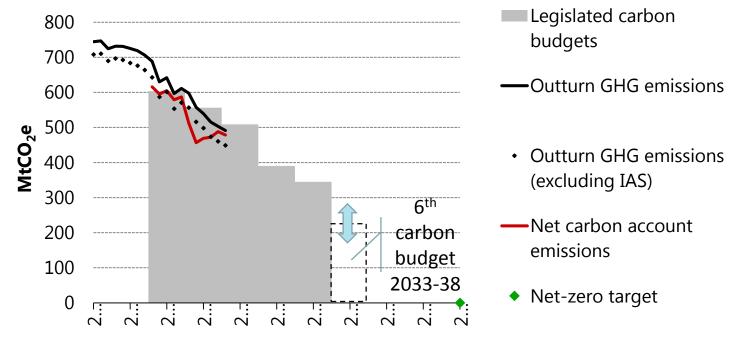

Reaching net-zero emissions in Scotland

What if half of gas demand for heat was converted to heat pumps with a (generous) Coefficient of Performance of 3?



- Peak daily electricity demand roughly 50% bigger
- Bigger intra-annual variation of electricity
 - What extremes should the system be capable of meeting? How big and for how long?

Next steps for Scotland


- Setting a net-zero greenhouse gas emissions target for 2045 represents a stepchange in ambition for Scotland.
- The Scottish Parliament's 2030 target to reduce emissions by 75% will be extremely challenging to meet.
- Ensure that by 2032 (or even earlier if feasible) there is no need for anyone in Scotland to buy a petrol or diesel car or van.
- Ensure that all buildings are as energy efficient as can be practically achieved and that low-regret forms of low-carbon heating (i.e. heat pumps in off-gas areas, hybrid heat pumps, and low-carbon district heating) are being rolled out at scale in the 2020s
- Incentivise switches to low-carbon heat and improve energy and resource efficiency in industry.
- Work with the UK Government to ensure that policy mechanisms and infrastructure are developed in a way that allows Scotland to decarbonise industry, roll-out greenhouse gas removals, and transform low-carbon electricity generation and distribution to enable electrification of other sectors.
- **Tackle skills gaps** that would otherwise hinder progress and deliver the commitment to 'green' jobs that has been promised.

Five legislated Carbon Budgets (so far)

Source: CCC (2019) Progress Report to Parliament

6th Carbon Budget due to be published in September 2020

6th carbon budget: call for evidence

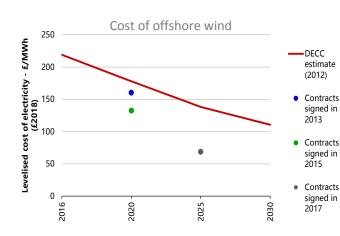
Home	About us 🗸	Tackling climate change 🛨	News +	Publications -	Blogs	Contact	t us	Search site	Q
Home > N	ews stories > C	CC launches Call for Evidence t	o inform ad	lvice on UK's Sixth C	arbon Bu	dget			
ссс	launch	es Call for Evi	denc	e to infoi	m	1	lopics:		
advi	ce on l	JK's Sixth Cark	oon B	udget		(Carbon budgets and	targets	
⁵ December 2019 The Committee on Climate Change (CCC) has launched a new Call for Evidence to inform its advice to the UK Government on the Sixth Carbon Budget, due to be published in September 2020.			-	Related content The Sixth Carbon Budget and Welsh emissions targets – Call for Evidence ^{5 December 2019} CCC to publish Sixth Carbon Budget in September 2020					
			eto s						
	-	required under the Climate Ch lation on the level of greenhous	-				17 October 2019		
2033-2037	7. It will set out a	a pathway to meeting the UK's to be legislated following that	new net-ze	ro emissions targe	· ·		• What	t busines	-

Responses to the Call for Evidence will help to inform the Committee's analysis over the next six months. It covers five key topics:

- Climate science and international circumstances
- The path to the 2050 target
- Delivering carbon budgets
- Wales, Scotland and Northern Ireland and
- · Emissions reductions in key sectors of the UK economy

s and/or policy instruments could be used to continue to decarbonise UK power emissions to close to zero by 2050,

whilst minimising costs?


- Managing variability: interconnection, battery storage. flexible . demand.
 - What other technologies could play a role here?
 - What evidence do you have for how much demand side ٠ flexibility might be realised?

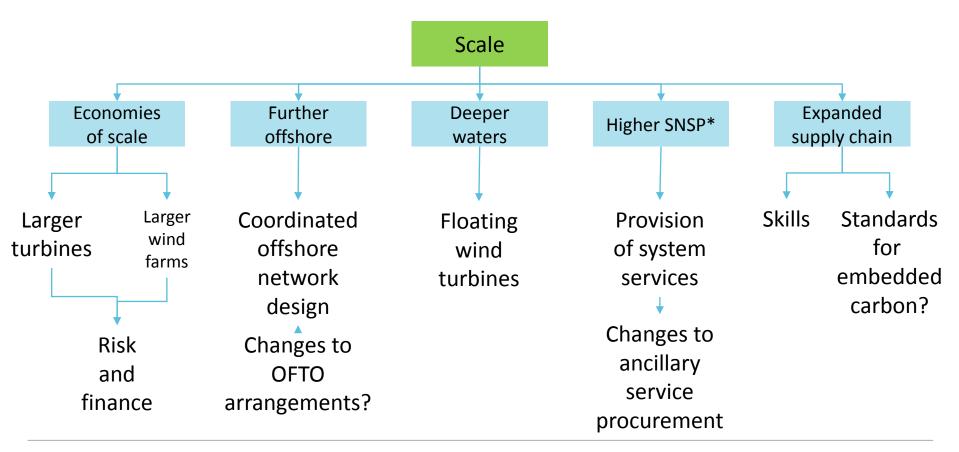
Deadline for responses: Wednesday 5 February, 2020

Net-zero and the reality of innovation: No more cost than already expected

2050 target (v 1990)	Estimated cost	
2003: -60% CO ₂	0.5-2.0% of GDP	
2008: -80% GHG	1-2% of GDP	Sam
Now: -100% GHG	1-2% of GDP	

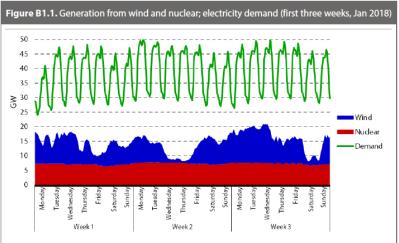
More effort

Innovation


Clean Growth

Co-benefits

13



• What mix of 'schedulability', flexibility and 'persistence' of resources do we need?

Figure: the CCC

- Reduced system inertia and short circuit current
 - New faster frequency containment reserve
 - A market for short circuit current capability?
- Closure of plant providing frequency, voltage and black start services
 - New value for storage and enhanced reactive power capability
- Network constraints
 - 'Flexibility' gets you only so far
- Uncertain interactions between power electronic converters
 - New sets of Grid Code requirements and enforcement responsibilities

- Clear that major action is needed by everyone government, business leaders, investors and citizens in the next decade not just in the 20 years after that
- A role for government (at all levels) in driving towards net-zero
 - Supporting R&D
 - Creating the environment for investment
 - Regulating and monitoring to drive change
 - Developing clear pathways to allow business investment and workforce planning
 - Consultation and clear signalling of policy direction
 - Risk of stranded assets as emissions reduction becomes ever more pressing
 - Supporting education and development of skills
 - Ensuring fair distribution of costs, risks and benefits, and a just transition
- Business can
 - Invest in skills and knowledge
 - It cannot be left to government alone
 - Help to shape consumer expectations and norms
 - Enable its own workforce to minimise personal emissions, e.g. in travel and diet
 - Invest knowing that emissions reduction must happen

Claire Mack

Chief Executive, Scottish Renewables

Professor Keith Bell Committee on Climate Change

Zoë Keeton

Head of Regulation and Policy, innogy Renewables UK

Dan Finch

Managing Director, EDP Renewables

Colin Maciver

Development Manager, Crown Estate Scotland / Project Manager, SOWEC Tweet @ScotRenew

#SROFFSHORE20

Planning for sustainable growth

Stephanie Conesa Policy Manager Scottish Renewables

Brian McFarlane Head of Projects - Offshore Development SSE Renewables

Offshore Wind Sector Deal Barriers to Growth Workstream Overview

Brian McFarlane

What is the Offshore Wind Sector deal?

A partnership between the sector and the government which is an ambitious, long-term strategy, in which offshore wind will become the backbone of the UK's power system.

Policy framework to deliver

OffshoreWind

Ind

- 30GW by 2030 (30% of UK electricity, with £48billion infrastructure investment, £2.6billion a year export value, £2.4billion a year total electricity system costs reduction, jobs from 11K to 27K).
- And step up to net zero by 2050.

2030

Sector Deal- Barriers to Growth

Project	OWIC Sponsor	W/S Lead
People & Skills	Hugh McNeal	Celia Andersen
Solving the Integration Challenge	Matthew Wright	Jane Cooper
Supply Chain	Clark MacFarlane/Jonathan Cole	Ray Thompson
OWGP	Halfdan Brustad	Sophie Banham
Clusters	Julian Brown	Mary Thorogood
OFTO & Future Transmission Model	Danielle Lane	Zoe Keeton
Aviation / Radar	Zoe Keeton	Dujon Goncalves-Collins
Barriers to Growth	Benj Sykes	Brian McFarlane
Innovation (Cross-cutting)	Andrew Jamieson	Chris Hill

- The B2G workstream aims to **understand and navigate the challenges** faced by consents and cumulative environment impacts to meet the Sector Deal commitments and report these to Government via OWIC and the Sector Delivery Team, which B2G forms part.
- B2G will provide **leadership and oversight** to the offshore wind industry to identify, resolve and overcome strategic deployment issues in relation to consents and cumulative environmental impacts both in the marine and onshore areas.
- B2G will coordinate and collaborate with the numerous existing programmes of work (e.g. SCOT MER, TCE's SEAP, ORJIP, OSMWRF etc), SNCB's and key decision makers.
- The B2G workstream will have to **demonstrate to Government** that these challenges are being managed to overcome to allow 30GW to be consented by 2030.

Barriers to Growth-structure

The Barriers to Growth Coordination Group will have an overview of all of the work in consents, licencing and the environment relating to Barriers to Growth. They will be responsible for ensuring that there is a clear road map with commitments to meet the 2030 and net-zero targets

Executive B2G Board - Offshore Wind.

Chaired by Benjamin Sykes (OWIC) Department for Business, Energy and Industrial Strategy (BEIS) Department for Environment, Food and Rural Affairs (Defra) Welsh Government (WG) Scottish Government (SG)

B2G Co-ordination Group -Offshore Wind

Chaired by Brian McFarlane (OWIC)

RUK, Scottish Renewables, Energy UK, Natural England: MMO, PINS, JNCC, SNH, NRW, Marine Scotland, BEIS, DEFRA, DFT, MCA, Scottish Gov, Welsh Gov, The Crown Estate, Crown Estate Scotland, OCLG/Developer representation.

OffshoreWind IndustryCouncil

- 1. Approach to derogations (alternatives, IROPI, compensation)
- 2. Cumulative ornithology issues
- 3. Under water noise and marine mammals
- 4. Stretched resourcing
- 5. Co-existence and priorities with other sea bed users
- 6. Biodiversity net gain
- 7. Alleviate delay and uncertainty arising from Review of Consents process

Dr Janelle Braithwaite Senior Policy Officer - Marine Planning and Policy Marine Scotland

Tweet @ScotRenew #SROFFSHORE20

Scottish Marine Energy Research (ScotMER)

A coordinated approach to marine renewable energy research in Scotland

Janelle Braithwaite Senior Policy Officer Janelle.Braithwaite@gov.scot

Scottish Government Riaghaltas na h-Alba gov.scot

marinescotland

Scottish Government Policy

Scotland's National Marine Plan (2015):

Decision making in the marine environment will be based on sound scientific and socio-economic evidence

Where evidence is inconclusive and impacts of development or use on marine resources are uncertain, reasonable efforts should be made to fill evidence gaps and decision makers should apply precaution within an overall risk-based approach.

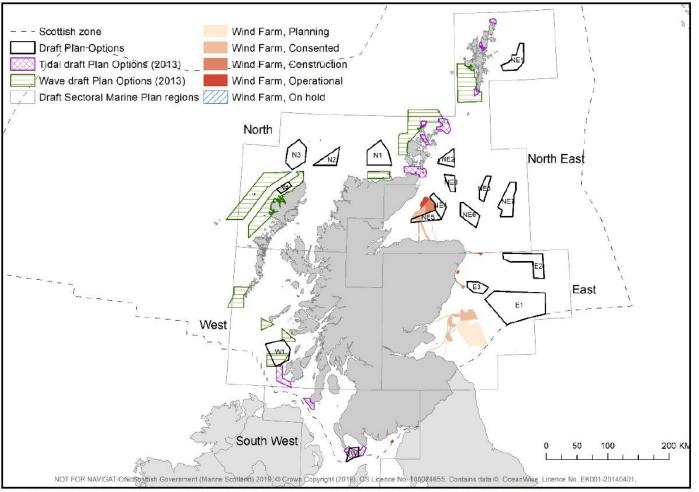
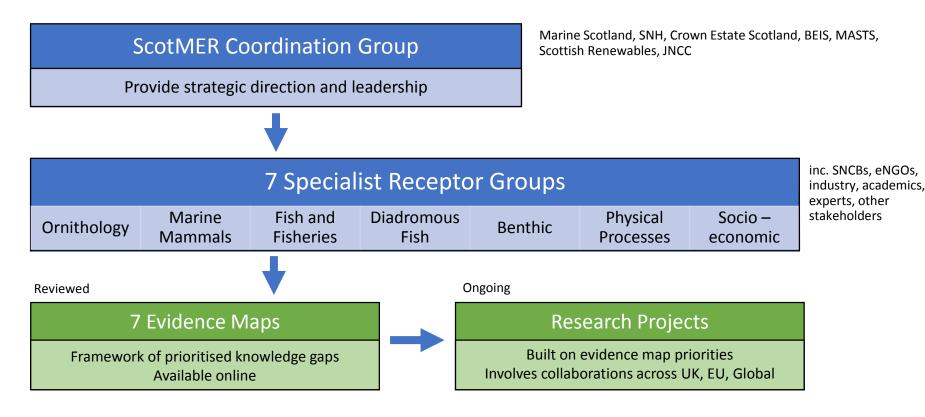


Figure 1 Current and planned offshore energy generation, DPOs and draft Plan regions


ScotMER Programme

- To deliver coordinated and collaborative research to facilitate the sustainable development of the offshore renewables sector in Scotland.
- Three parts to ScotMER:

Coordinated and collaborative approach

	ORNITHOLOGY	Last Updated: Mai	rch 2017													
Information						The	mes		Reasoning		Prioritisation					
ID	Knowledge Gap	Target Species/Group	Seasons	Target Regions	Collision	Displacement	Barrier	Interactions	Relevance	Renewabl es Sector		to>1	Relevant to ≻1Project or Region	Score	Currently feasible	Potential activity
OR.26	Forecasting population level consequences of predicted effects.	Gannet	All Year	UK		igh High High			Population level consequences often critical	All	2	0	1	2	1	Compare performance of availa
		Kittiwake		ик	High		High	question for assessments. Population Viability Analyses often used, but range of approaches available. The predictive ability of the PVAs	All	2	1	1	4	1	population forecast approaches and produce guidance on most appropriate method. Consider o	
		Auks		ик					produced has not been tested/ validated.	All	2	1	1	4	1	quality/ quantity available.
OR.27	Sensitivities of metrics of change produced by PVAs.	Seabirds	All Year	UK/ Europe	High	High	High	High	Assessment ultimately based on population consequence of predicted effect, which rely upon appropriate use of metrics of change.	All	2	1	1	4	1	Sensitivity analysis
OR.28	Influence of large scale change on population forecasts e.g. climate change.	Gannet	All Year	ик		igh High Hi			Assessments are often based on no impact population forecasts, but these forecasts h currently ignore large scale drivers of change. Effects of climate change on kittiwake have been predicted to be particularly relevant.	All	1	0	1	1	1	Produce a predictive populatio model that accounts for climate change scenarios
		Kittiwake		ик	High		High	High		All	2	1	1	4	1	
		Auks		UK						All	2	1	1	4	1	
OR.29	Gathering data at sites that are small, in shallow waters, experience very strong tidal flows.	Seabirds	All Year	Europe	High	High	Low	Higk	Standard survey techniques are poorly suited to these sites, resulting in data that has poor spatial temporal resolution, detectability issues, or expensive.	All	1	1	1	2	1	Develop and validate appropriat cost effective methodologies. I of drones, VP methods, etc.
OR.30	Technologies to allow tracking species/ during seasons of interest.	Seabirds	All Year	UK/ Europe	High	High	High	High	Limited data available to inform assessments for some species due to technological constraints.	All	1	1	1	2	1	Develop and demonstrate taggi technologies.
OR.31	Information and methods for CIA at large spatial/temporal scale.	Seabirds	All Year	UK/Europe	High	High	High	High	Predicted effects may occur throughout the year, seabirds travel large distances and may encounter effects from range of projects over large spatial scale e.g. North Sea, and it may be appropriate to include this in an assessment.	All	2	1	1	4	1	Produce and populate a centralised framework (at UK level)?
									Seahird nonulations may be impacted by multiple							Assessment of relative importance of other managed

Examples of research activity

- Seabirds:
 - Bird sensitivity mapping tool
 - Seabird behaviour at sea, flight heights, body-mass survival rates
 - Framework for regional Strategic Environmental Assessment
 - Bird and cetacean monitoring in Scottish waters
- Marine mammals:
 - Reviewing noise modelling approaches to guide assessments
 - Improving modelling population consequences of disturbance (iPCoD)
- Cumulative effects assessment framework
 - Consistent approach to assessing cumulative impacts on priority species
- Socio-economic: how best to define the 'local area' for impact assessments

Link up with other groups

- North Sea Energy Cooperation: Marine Spatial Planning (EU)
 - CEAF Common Environmental Assessment Framework
 - CREW Cooperation on research on ecological effects of offshore wind
- Offshore Renewables Joint Industry Programme (ORJIP)
 - ORJIP Offshore Wind
 - ORJIP Ocean Energy
- Crown Estate Scotland, Crown Estate (rest of UK)
- BEIS Offshore Energy SEA Research Projects
- International e.g. WREN

Working Together to Resolve Environmental Effects of Wind Energy

Coming up

- ScotMER Symposium in Edinburgh
 - 3-4 March 2019
 - Focussed on monitoring
- Report from MASTS Workshop
 - Ecological impact and research priorities
- EIMR Conference
 - Environmental Interactions of Marine Renewables
 - 21-23 April 2020

Janelle Braithwaite

janelle.braithwaite@gov.scot Twitter @marinescotland

Scottish Marine Energy Research Programme

Collaborative research to support the sustainable development of offshore renewable energy in Scotland's seas

Liam Leahy Offshore Wind Manager The Carbon Trust

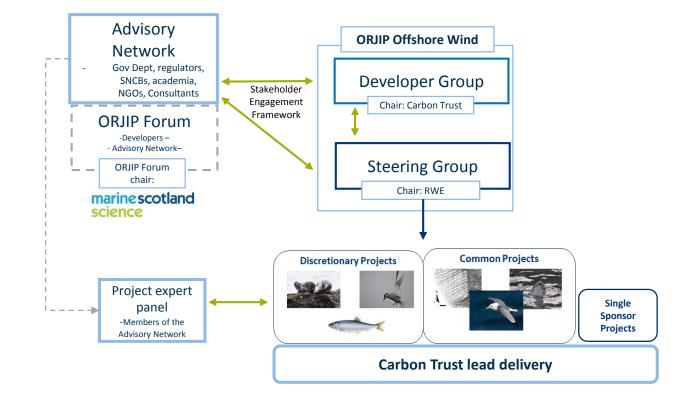
Offshore Renewables Joint Industry Project (ORJIP) for Offshore Wind

A collaborative approach to reducing consenting risk in support of achieving 2030 targets

29th January 2020

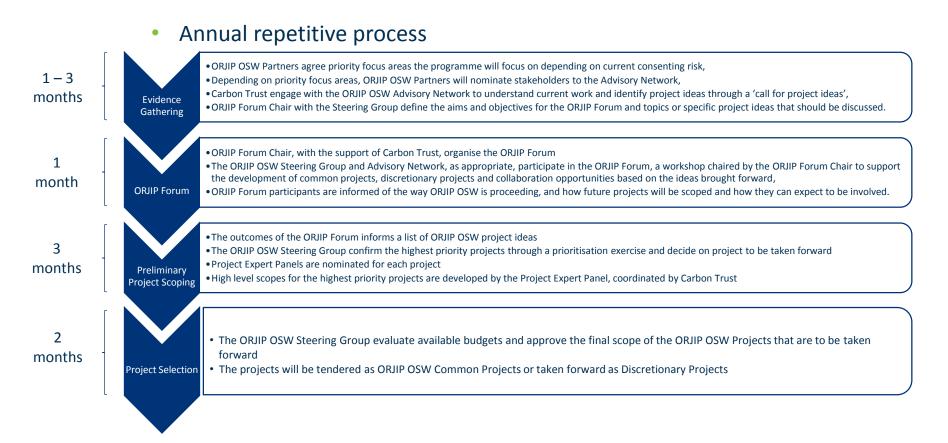
Scottish Renewables' Offshore Wind Conference 2020 Plenary 4A: Planning for sustainable growth Offshore Wind

Programme set up to conduct research into the environmental impact of offshore wind to help reduce the consenting risk to support achieving industry capacity targets

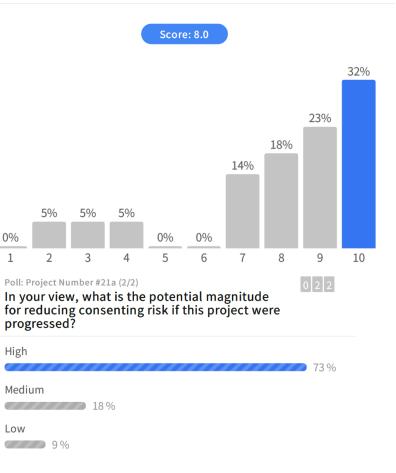


Key insights:

- 8 Offshore Wind Developer Partners/4 Non Developer Partners (Membership always open to new partners)
- Stage 2 launched July 2019, minimum 4 year programme with possible 2 year extension
- Minimum of £940k investment with significantly more expected towards Strategic Discretionary Projects
- No constraint in terms of geographical context or consenting risk definition, priorities defined each year based on consenting risk at the time

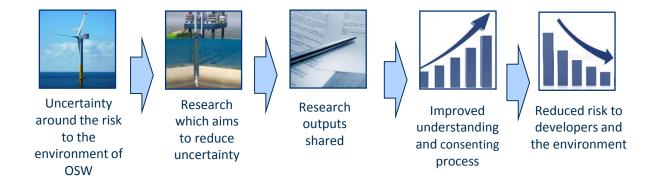

ORJIP Offshore Wind Project Types

Common Projects	Projects solely funded by the ORJIP Offshore Wind core budget which address common issues for all ORJIP Offshore Wind partners and the offshore wind industry. These will be contracted out to subject experts and managed by Carbon Trust with the aim of commencing at least 2 a year. Project types- Guidance notes, tools, strategic plans, technology scans, literature studies, desk-based studies
Discretionary Projects	Projects which are either, too large to be delivered through the ORJIP Offshore Wind common budget or, cover more specific topic areas which are priority for a proportion of the ORJIP Offshore Wind partners. The projects will be set up using core ORJIP Offshore Wind budget, but the projects will be funded by ORJIP Offshore Wind partners that 'opt in' to participate with the aim of commencing at least 2 a year. Non-ORJIP partners will also be invited to fund these projects if interested.
	Project types- Large strategic projects like the Stage 1 BCA study or species specific projects like herring spawning sites
Single Sponsor Projects	A Project relevant to ORJIP Offshore Wind's objectives that is driven and funded by a single ORJIP Offshore Wind partner. SSPs can be suggested by any ORJIP Partner, under the understanding that project set up and management will entirely be financed by that single partner and not receive any contribution from the ORJIP core budget. The ORJIP Offshore Wind Steering Group will be consulted and will decide whether a SSP can be brought forward under the ORJIP Offshore Wind name.
	Project types- Strategic projects for a single party such as Marine Scotland's <i>Bird Sensitivity Mapping</i> project completing under ORJIP Offshore Wind Stage 1.



Poll: Project Number #21a (1/2)

In your view, how much of a priority is the progression of this project in terms of addressing offshore wind consenting risk? Please rank your answer 1 – 10, with 10 being an absolute priority.



- 74 project ideas reviewed in 1 day
- Fantastic engagement from Advisory Network
- Use of SLIDO as interactive polling tool
- Two questions asked:
- 1. Project Idea progression in terms of priority
- 2. Impact on consenting risk if project idea progressed

Project Prioritisation and Selection Process – Year 1

General Selection Principles

- Screen out projects relating to IROPI
- Screen out projects where duplication with other industry groups has been identified
- Screen out projects not within focus areas unless strategic reason to keep in
- Account for ORJIP Forum results by applying a priority threshold based on forum results
- ORJIP OSW partner evaluation exercise

Robin Cox Environmental Specialist Vattenfall

EOWDC

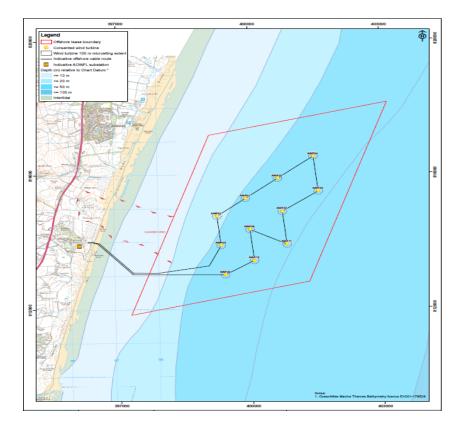
Scientific Research & Monitoring Programme

Robin Cox, Vattenfall

29 January 2020

Introduction

- Background to EOWDC
- Five Research Programmes
- Outputs and timescales



Background

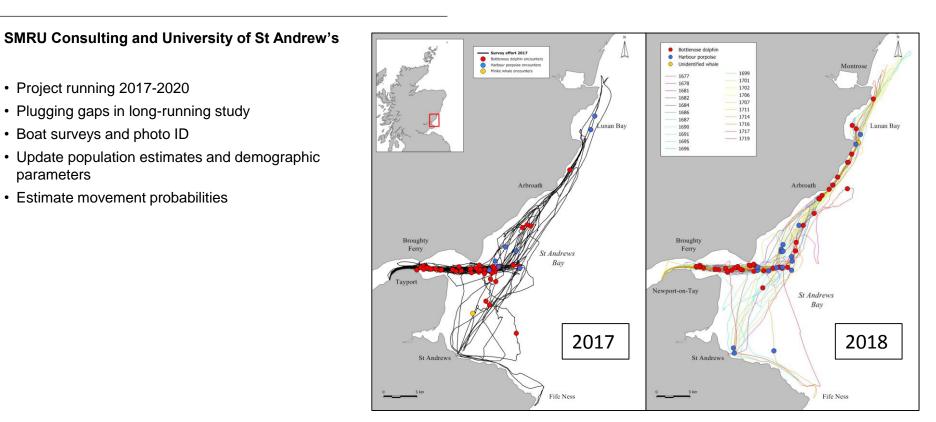
European Offshore Wind Deployment Centre

EOWDC

- · Part of demonstration leasing round
- 11 turbine site consented 2013
- Construction 2016 2018
- First power 2018
- Planning condition for Scientific Research and Monitoring
 Programme
- Scientific panel comprised of University of Highlands and Islands, Scottish Government, SNH, RSPB, JNCC, Crown Estate Scotland, SEPA, Aberdeen City and Aberdeenshire Councils

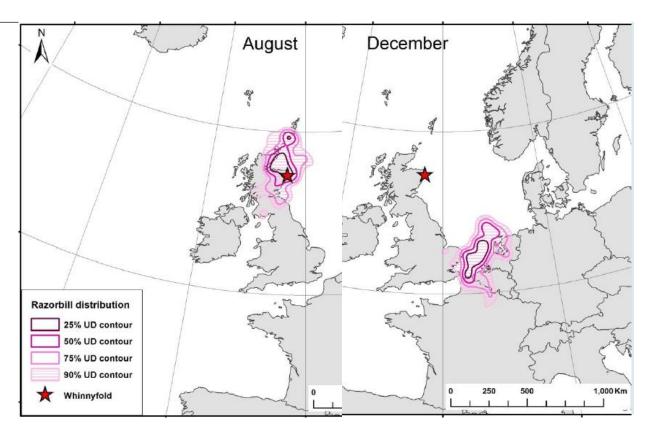
Research Projects

Five projects


- Bottlenose Dolphin Movements
- Tracking winter movements of Auks
- Salmon and Sea Trout Tracking Array
- Socio-economic impact of offshore wind
- Bird collision avoidance study

Dolphins

Improving understanding of bottlenose dolphin movements along the east coast of Scotland

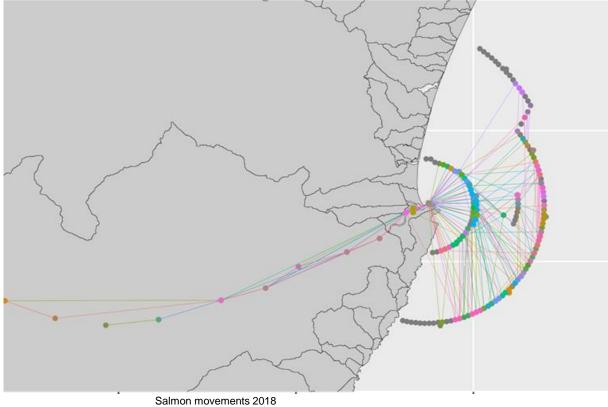


Auks

Tracking non-breeding season movements of adult auks

MacArthur Green and CEH

- Project Running 2017-2021
- Improving understanding of winter distribution of guillemots and razorbills
- Geolocators and Time Depth Recorders
- Identify which populations are at risk and when
- Reduce uncertainty in assessment of impacts



Salmon and Sea Trout

North East Scotland Salmon and Sea Trout Tracking Array

River Dee Trust and MSS

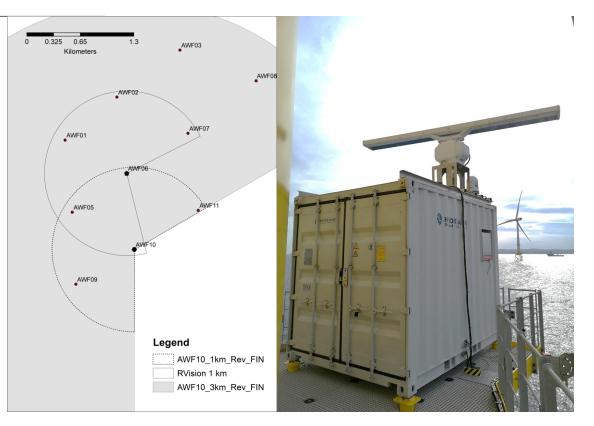
- Project running 2017-2020
- Increasing understanding of salmon and sea trout river mouth and coastal distribution and movements
- Tagging of smolts in Dee, Don and Ythan
- Receivers in rivers, harbour and offshore arrays (4km and 10km)
- Combine data with Scottish Shelf Model to understand smolt distribution
- Hope to develop predictive tool transferable to other rivers

Socio-economic study

Socio-economic impact of offshore wind on the human environment

Oxford Brookes University

- Project running 2017 2020
- Review of existing methods
- Literature review
- · Comparison of predictions with actual impacts
- Enhance understanding of offshore wind farm socio-economic impacts
- Production of good practice guide to socioeconomic assessment of offshore wind in the UK



Bird Collision Avoidance

Seabird Flight Behaviour at Offshore Wind Farms

RPS group and DHI

- Project running 2019 2022
- · Integrated radar and camera technology
- 3D flight tracks from combined radar and video footage
- Analysis to provide evidence of:
 - Flight behaviour within wind farm and vicinity of turbines
 - · Meso- and micro-avoidance
 - · Flight height and flight speed
- Improve certainty in collision impact predictions

Outputs

- Final report in 2021 for Auk project
- Final report in 2022 for Bird Collision Avoidance
 project
- Reports will available on Vattenfall EOWDC website (interim reports currently available)
- · PhD theses
- · Peer reviewed papers
- · Vattenfall contact details:

chris.jackson@vattenfall.com, robin.cox@vattenfall.com, jesperkyed.larsen@vattenfall.com

Research programmes

Please click on the links below to read each project's interim research report or latest update.

- Auk and Guillemot Tagging Study by MacArthur Green
- Salmon sea trout and smolt tracking study by River Dee Trust
- Socio-Economic Study by Oxford Brookes
- Dolphin tracking study by SMRU
- Bird avoidance study by RPS

https://group.vattenfall.com/uk/what-we-do/our-projects/european-offshore-wind-deployment-centre

Gary McGovern Partner Pinsent Masons LLP

Offshore Wind Conference

Overcoming precaution, to deliver proportionality

28 January 2020

The Context: A "Climate Emergency"

"There is a **global climate emergency**.

The evidence is irrefutable. The science is clear. And people have been clear: they expect action. The Intergovernmental Panel on Climate Change issued a stark warning last year: the world must act now. By
2030 it will be too late to limit warming to 1.5 degrees

(Rosanna Cunningham, 14 May 2019)

What Are We Doing About It?

We have a framework and emerging plan...

- "Net Zero" by 2045 (100% lower than baseline)
- Interim Targets, e.g. 2030 / 75% lower
- Low carbon electricity generation must "quadruple" (UK CCC)
- Sectoral Marine Plan (SMP) to be adopted in 2020
- Target of 10 GW by 2030 (draft SMP, "high scenario")
- OWF leasing rounds c. every 2 years from 2020 (CES)

Can the Plan be Delivered in Time?

- Yes but perhaps not with "business as usual" approach
- Historic timescales:
 - 1st OWF in c. 2006
 - 915 MW operational (6 x OWF)
 - 4.1 GW consented (8 x OWF)

FIGURE 28: Time to deliver new projects

Diagnosis

- Planning and consenting needs streamlined
- That requires:
 - targeted approach to data collection
 - proportionate approach to assessment & risk
- Precaution must not stand in the way of proportionality

The Precautionary Principle

Competing definitions and interpretations...

Non-Preclusion	Scientific uncertainty should not automatically preclude activities that pose a risk of significant harm
Margin of Safety	Regulatory controls should include a safety margin; with activities limited below the level at which no adverse effect has been observed or predicted
Best Available Techniques	Activities that present an uncertain potential for significant harm should be subject to BAT to minimise the risk of harm (unless the proponent shows that they present no appreciable risk of harm)
Prohibitory	Activities that present an uncertain potential for significant harm should be prohibited unless the proponent shows that it presents no risk of harm
WINNER	

The High Water Mark – HRA

Waddenzee

• "A risk... that cannot be excluded beyond reasonable scientific doubt....using objective information".

• But....

- absolute certainty not required.
- Having exhausted scientific means, you can work with probabilities and estimates.
- Not a licence for inaction based on mere "doubt".

The Right Precautionary Principle

 "...to protect the environment, the precautionary approach shall be widely applied... Where there are threats of <u>serious or</u> <u>irreversible damage</u>, lack of full scientific certainty shall <u>not</u> be used as a reason for postponing cost-effective measures to prevent environmental degradation"

(RIO Declaration, 1992)

• "The precautionary principle should not be used to impede development without justification"

(SPP, 2014).

A Reset: a Precautionary Approach

Two elements:

- 1. a need for decision-makers to anticipate harm: activityproponent still responsible to establish that the proposed activity is unlikely to result in significant harm.
- 2. the concept of <u>proportionality</u>: consideration of risk and cost- benefit analysis.

A Reset : a Precautionary Approach

- The precautionary principle can <u>enable</u> decision-making
- Data can always be refined ask: is it necessary?
- Regardless: data collection does not render existing data inadequate to the task in hand
- Interim uncertainty can be accounted for (e.g. margin of error)
- "Uncertainty" should not be a reason to not give advice at all
- Data gathering should inform but not delay advice or decisions

The Road Back to Proportionality

- Define and adopt a precautionary <u>approach</u>:
 - absolute certainty not required
- Cost v Benefit cost of inaction should be a factor in decisionmaking
- Implement proper screening and scoping
- Culture shift required
- Reverse ECJ *People Over Wind* ruling (use of mitigation at screening stage)

Mantra for the 2020s...

CALITTLE LESS IVERSATION TTLE ORE ACTION

Stephanie Conesa Policy Manager, Scottish Renewables

Brian McFarlane Head of Projects - Offshore Development, SSE Renewables **Dr Janelle Braithwaite** Senior Policy Officer - Marine Planning and Policy, Marine Scotland Liam Leahy Offshore Wind Manager, The Carbon Trust **Robin Cox** Environmental Specialist, Vattenfall **Gary McGovern** Partner, Pinsent Masons LLP Tweet @ScotRenew

#SROFFSHORE20

IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE, EXHIBITION & DINNER 28 & 29 JANUARY 2020 GLASGOW

SDIC

DEME

Solving the integration challenge

Andy Hogg Head of Energy Industries Division Scottish Government

Dr Zeynep Kurban Strategy Manager – System Integration of Renewables ORE Catapult

Tweet @ScotRenew @ORECatapult #SROFFSHORE20

Pathways for offshore wind integration into energy systems

Dr. Zeynep Kurban

29 January 2020

The OSW Integration Opportunity

ore.catapult.org.uk

Current Energy System

7 GW of offshore wind

Majority of properties heated by natural gas

Fuel engine vehicles are the most popular

50% of electricity generation comes from fossil fuels

Meter reading send once every half a year

At least 30 GW of offshore wind by 2030

Properties use electric

heating or gas network

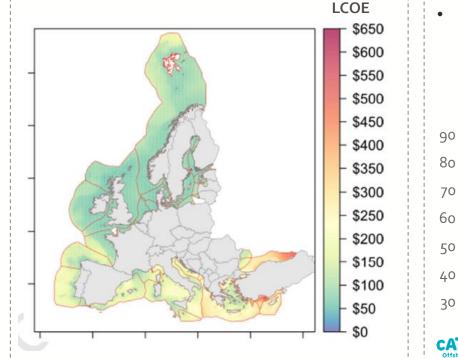
converted to hydrogen

Future Energy System

All new vehicles are electric, hybrid or hydrogen-powered

Only 20% of electricity generation comes from fossil fuels in 2030

Smart meter reading send every half an hour



37

2050

Global LCoE from offshore wind [J. Bosch, 2019]

• Potential capacity ~ 1000 GW (with 890 GW > 55 m depth).

LCoE ORE Catapult, 2019

£/MWh

LCOE

2020

46

2025

36

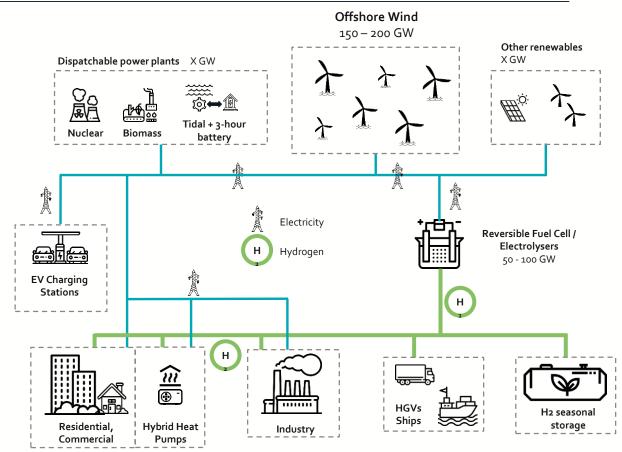
2030

- By 2050 LCOE could be £32/MWh [low] £37/MWh [high] • CF: ~46-54%
- **ICL IWES model:** Unlocking the potential wind resources (e.g. deep waters) is needed
 - Up to 280 GW wind could be integrated to GB and interconnected EU grids and/or used to make H2

40

34

2045


2040

Displace PV and more expensive low-carbon generation such as nuclear

2035 2035 2 Year of First Power

Potential offshore wind-dominated energy system in 2050

Key integration Challenges

- Offshore wind farm development
- Demand sectors and their coupling
- Grid Design/Flexibility:
 - balance between electricity and gas / hydrogen system
 - balancing for short and long timeframes

Policy mandates and frameworks

- level of interconnection,
- role of hydrogen in energy trading,
- Standards & regulation

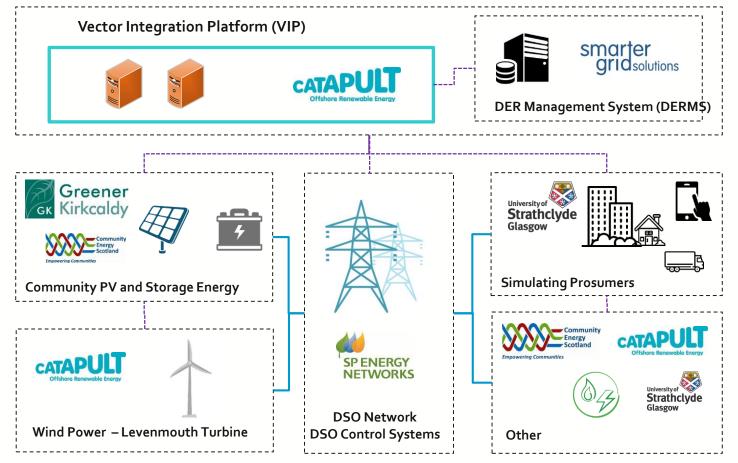
- Floating Offshore Wind Centre of Excellence
 - Established in October 2019, based in Glasgow, working across the UK
 - Vision to accelerate the commercial deployment of Floating Offshore Wind in the UK
- Powering Oil and Gas Platforms Using FOW Feasibility Study
 - Focused on North Sea assets
 - Techno-economic modelling

Industrial partners – major offshore wind developers, oil and gas owner / operators

Strategic partners – OGTC, Scottish Government, OGA

Academic partners – Scottish Universities' track record of relevant research

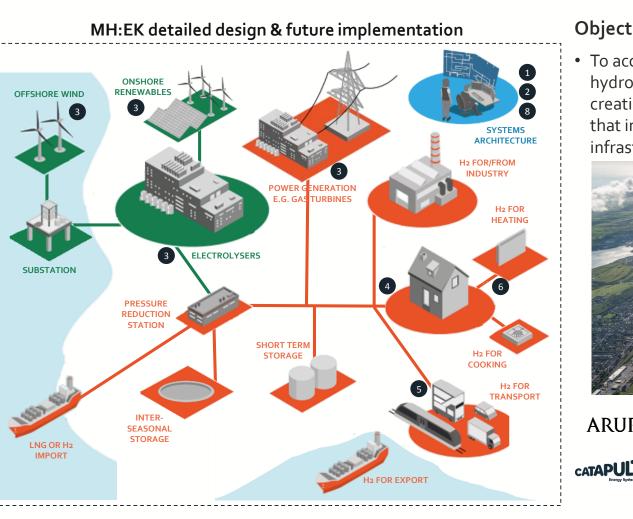
ORE Catapult -Demonstration project pipeline



ore.catapult.org.uk

ScotCLUE @ Levenmouth

- Concepts, Planning, Demonstration and Replication of Local User-friendly Energy Communities (CLUE)
- €7million project delivered over 3 years from December 2019
- Demo of a new more local/regional approach to flexibility
- Stakeholders: cooperatives, project developers, DSOs, owners, operators of LECs, utilities, supplier



Pembrokeshire County Council

Cyngor Sir Penfro

WALES&WEST

Objective

• To accelerate the transition to an integrated hydrogen and renewables energy system, by creating diverse, community-based seed markets that integrate with the cluster of major energy infrastructure along the Milford Haven Waterway

- Building the system to exploit offshore assets and how to coordinate onshore and offshore
- Pathways to **enabling flexible integration** of renewables into the grid
- Pathways to **improving techno-economics** (innovation and deployment)
- **The role of hydrogen** with very high deployment of low cost offshore wind?
- Aligning different sectors and **exploiting synergies** (electrical vs hydrogen for heat, power and transport)
- Creating a **regulatory framework** for delivering the offshore transmission networks and accelerating deployment

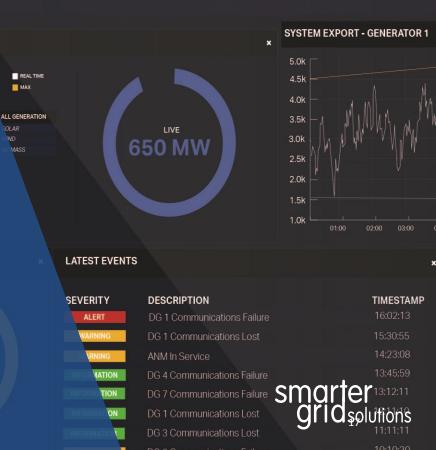
Contact us

Email us: info@ore.catapult.org.uk Visit us: ore.catapult.org.uk

Engage with us:

GLASGOW BLYTH LEVENMOUTH HULL ABERDEEN CORNWALL PEMBROKESHIRE CHINA

@orecatapult.org.ul


Dr Graham Ault Executive Director Smarter Grid Solutions

Integration Solutions: Offshore renewables need onshore DER flexibility

Dr Graham Ault

© Copyright 2020

Smarter Grid Solutions: DERMS software vendor

Global energy software company with Glasgow Head-Quarters and NYC / California offices

Multiple use case DERMS products interfacing to grids and markets, unlocking the true value of DER

Managing 0.5 GW DG , implementing projects connecting a further 1.5 GW, with pipeline stretching to 3 GW under management

System availability of 99.99% for all operational systems; working with partners and customers for the long-term

Ongoing investment in R&D to add to foundational ANM technology ensures continued market leadership

Mature managed services dedicated to ANM/DERMS operational platforms and customer needs

World-class reference projects and customers deploying and operating our ANM/DERMS products

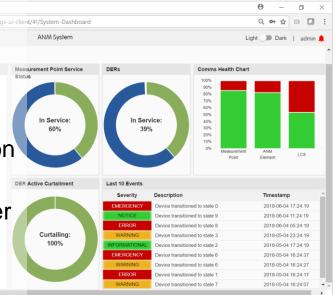
Flexible architecture enabling configuration and scaling to customer requirements and other systems

There are multiple solutions to the renewables grid integration and management challenge

Reaching 30GW and 75GW of offshore wind power requires n mature, scalable solutions: $\Theta \Rightarrow$ ANM System Light Dark Ladmin Q Search by name Battery1 Schedules to char 1. Transmission / Interconnection d 🔽 Manua 2. Energy Storage 3. Generation Curtailment (Market and Grid) 4. Conversion to Alternate Vectors & Fuels **Demand Side (and DER) Flexibility** 5. Device transitioned to state

Decentralisation is (possibly?) as big a trend in the energy system as Decarbonisation

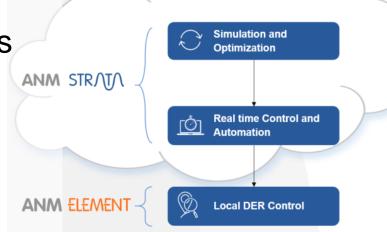
- Distributed Energy Resources (DER) have grown substantially and are set for yet more growth
- Significant differences between large offshore renewables facilities and DER
- Aggregate DER capacity and emerging tools, systems and other policy/regulatory/market imperatives is making DER a significant system management resource
- But there is still a long way to go ...


12/12/2018 11:31

12/12/2018 11:16

min hun M. A.M. M.

Recent developments and events show the value of coordinated DER management to support a clean energy system


- Renewable operators imbalance management products for DER and other new Supplier offerings
- Lowered grid connection costs and accelerated timeframes for grid connection for renewable DER
- DSO flexibility services overcoming local grid constraints and containing the clean energy transition costs
- August 2019 partial blackout points to need for better visibility and control over DER and response.
- We need capabilities that address the diversity of DER (and the customers behind them) to secure the grid

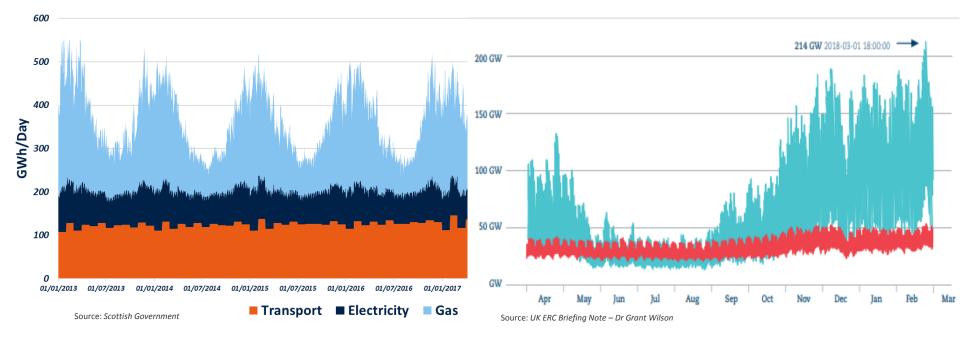
New approaches and capabilities are required to make DER a key component of a flexible system

- Clearer market incentives and new mechanisms
- Complementary flexibility products
- Better coordination
- Platforms and systems
- Interfaces between systems
- Business models, Roles and Responsibilities

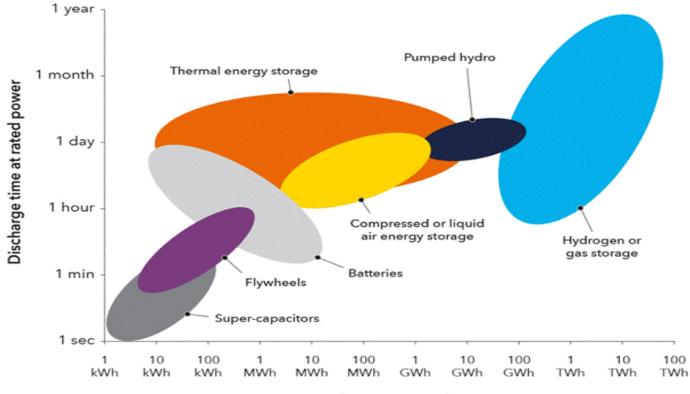
Conclusions

- We need a toolbox of solutions to manage a grid with 75GW of offshore wind power
- DER and customer flexibility is a growing and valuable resource in system operation
- DER flexibility can complement the other solutions in a coordinated, efficient approach to managing a clean, dynamic system.
- Coordinated management of DER / flexibility requires new approaches and supporting technology platforms

Lorna Archer Project Officer, Energy Futures SGN

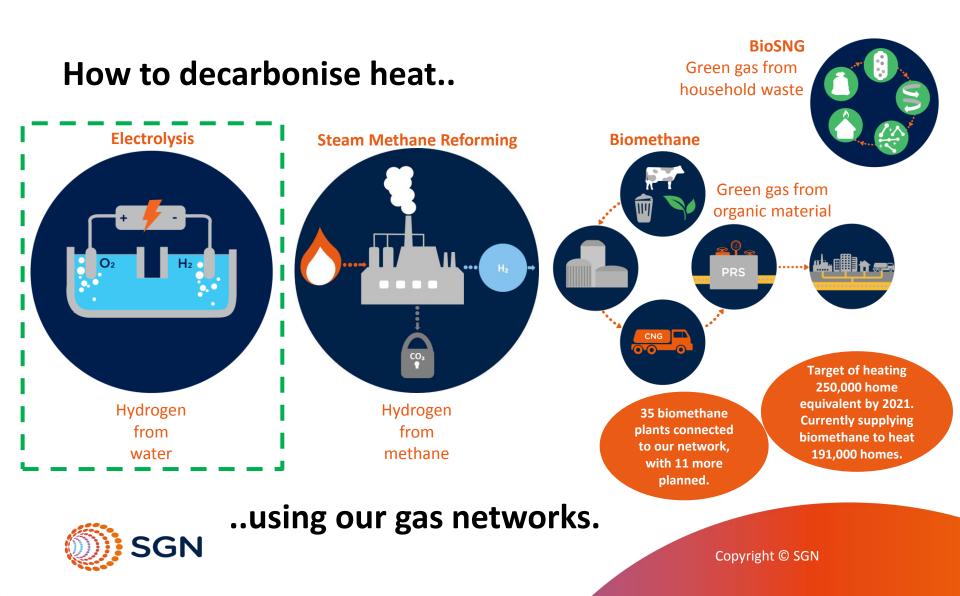

Delivering the Heat Decarbonisation Challenge SR Offshore Wind Conference 2020

Lorna Archer, Project Officer 29th January 2020

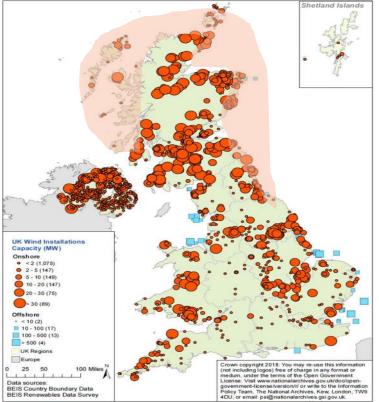

SGN Your gas. Our network.

Whole System Energy Demand - Scotland

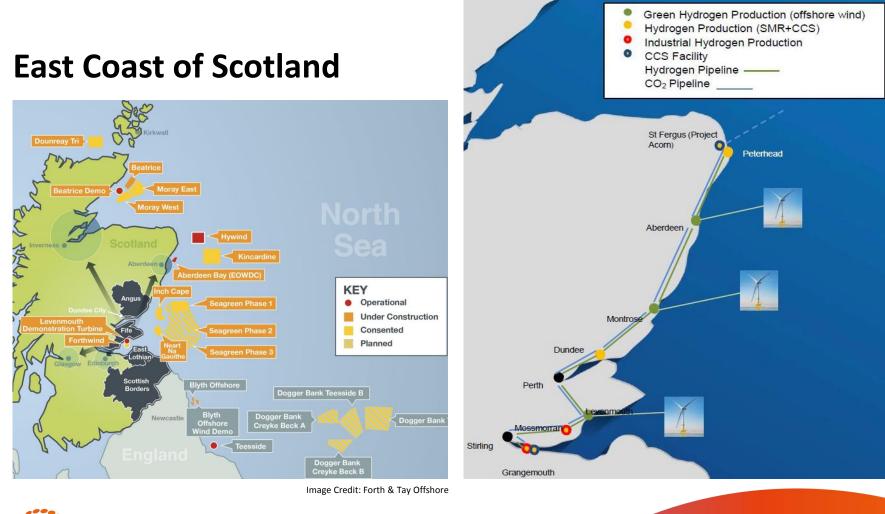
Energy Storage Technologies



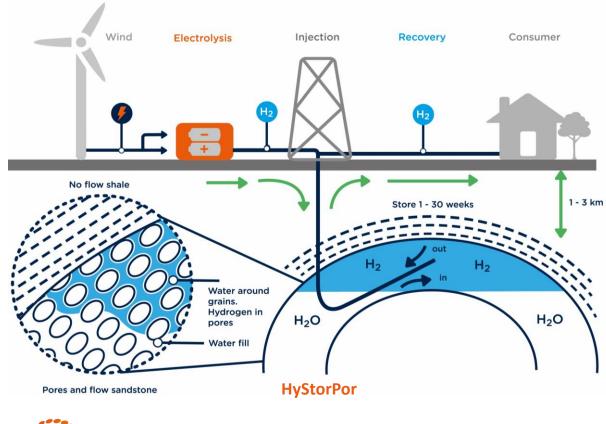
Energy capacity



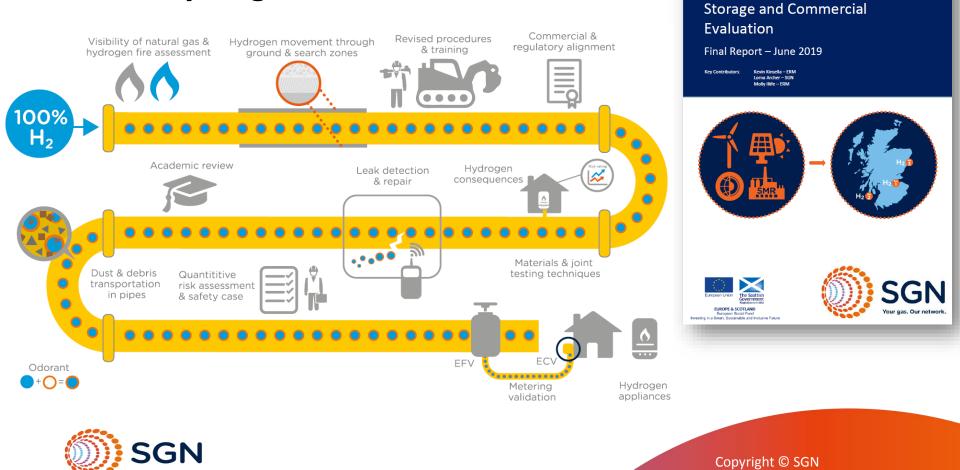




Offshore Wind Opportunity



Underground Storage of Hydrogen


UofE awarded the UK's first research grant by EPSRC. For investigating the attributes of sandstones and mud rocks as stores for H2.

100% Hydrogen Network

HYGEN: Hydrogen Generation,

Offshore Wind to Hydrogen

ORE Catapult 7MW Turbine Levenmouth in Fife

Energy Park Fife

Conclusions

Key challenges

- 1. Complexity of funding for delivering an end to end system.
- 2. Route to demonstration for market creation.
- 3. Regulatory intricacies

Fully Now Strategic decarbonised Stimulating change hydrogen economy Securing 100% H₂ supply/removing 20-80% H barriers and enabling <20% H₂ change H100 2% H₂ • H21 Hy4Heat LTS Future Billing HyGen SIU project (CoTER) Methiltoune Smart HyDeploy I & C Gas GS(M)R appliance Aberdeen quality Replacement Vision HyNet programme/ Future Billing • Cavendish Green gas Methodology • Hy NTS All steps lead to Real-Time OGM Networks lower carbon • 1 & C Gas MRPS programme quality Biomethane/ BioSNG Downstream renewables/whole systems/Pathfinder

Working to achieve maximum energy recovery, at maximum efficiency in the form that customers both want and <u>need</u>, working towards a net-zero landscape.

No regrets/no disruption for domestic customers

Thank you

SGN Your gas. Our network. Dr Callum Maclver Programme Manager - Electrical Infrastructure Research Hub University of Strathclyde

> Tweet @ScotRenew @ORECatapult #SROFFSHORE20

Regulatory Challenges for Delivering the Offshore Electrical Networks of the Future

Dr Callum Maclver: University of Strathclyde - callum.maciver@strath.ac.uk Co-investigators: Prof Keith Bell (Strathclyde) & Dr Ander Madariaga (ORE Catapult) Scottish Renewables Offshore Wind Conference 28th January 2020

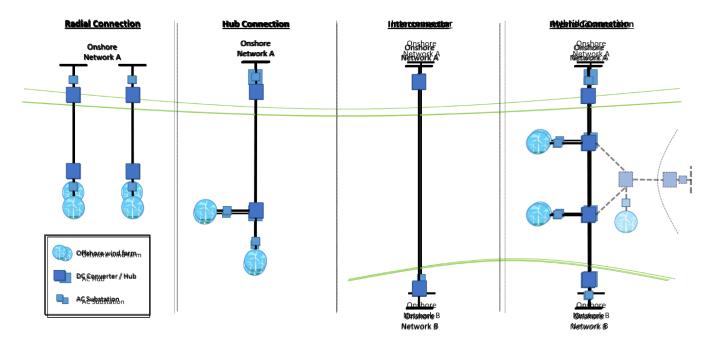
Project Background

Offshore Electrical Infrastructure Research Hub¹

- Collaboration between Strathclyde, Manchester & ORE Catapult
- 5-year programme with co-funding to address to all aspects of offshore electrical infrastructure
- "Hub & spoke" model open to collaboration with industry and academic partners

Project Aim:

"Identify regulatory issues affecting design, deployment & utilisation of offshore networks in the UK"


- With a view to achieving 75GW UK 2050 offshore wind deployment target
- Via comparison of various high level regulatory models deployed across Europe

^{1. &}lt;u>https://ore.catapult.org.uk/work-with-us/our-collaborations/electrical-infrastructures-research-hub/</u>

Types of Offshore Network

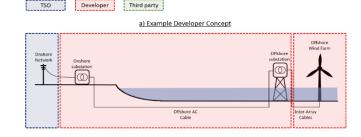
4 main configurations options available for offshore networks

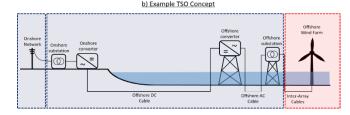
Regulatory Regimes - Overview

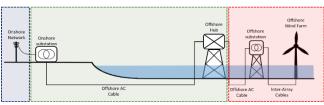
Three main possibilities for offshore transmission asset (OTA) development

Developer led approach

- Offshore wind farm (OWF) developer takes responsibility for development and operation of OTA's
- Remuneration for OTA factored into the OWF tender process


TSO led approach


- Transmission system operator takes responsibility for development and operation of OTA's
- OTA part of TSO's regulated asset base

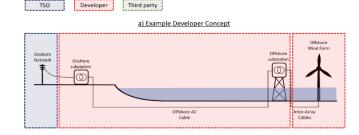

Third Party approach

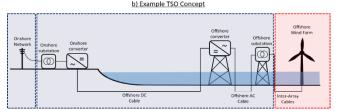
- A third party takes responsibility for development and operation of OTA's
- Separate tender for OTA development

Should be noted that build and operation phase can be separated with possibility for hybrid approaches e.g. UK OFTO regime

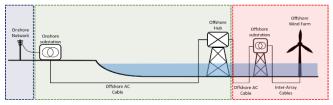
Regulatory Regimes - Features

Developer led approach


- ✓ Co-ordinated development of OWF & OTA
- ✓ Allows bespoke grid solutions (though typically radial)
- ✓ High incentive to minimise costs via competitive tender process
- * Low incentive to consider long term system requirements
- Less suited to hub or hybrid approaches

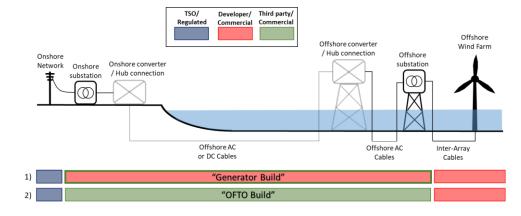

TSO led approach

- ✓ Enables holistic approach to offshore network planning
- ✓ Potential for co-ordinated designs and reduced infrastructure vs multiple individual projects
- ✓ Potential for standardisation & economies of scale
- Interface risk between OTA & OWF delays, stranded assets
- ★ More complex designs increased delivery risk
- Low cost pressure associated with regulated monopoly approach


Third Party approach

- Features highly dependent on nature of tender process could be suitable for radial, hub or hybrid approaches
- ✓ High incentive to minimise costs via tender process
- Additional interface risks TSO : OTA : OWF

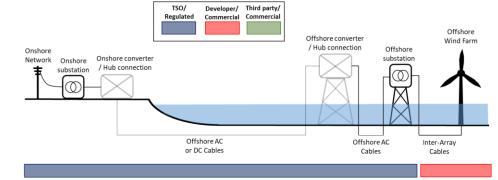
c) Example Third Party Concept



Country Comparison - UK

Competitively tendered OFTO regime

- Owner and operator of offshore transmission assets in GB is a separate entity (OFTO)
- "Generator build" option
 - OWF developer has option to build OTA but must sell to OFTO after completion
 - Only option used to date
- "OFTO build" option
 - If OWF developer declines to build the OTA a new tender process would be initiated for third party bidder

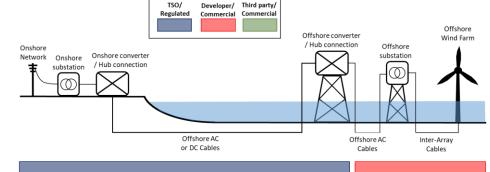

- Only radial developments deployed to date
- Clustering/hub connection possible but subject to single entity success in tender process
- Hybrid connection difficult under OFTO model legal & regulatory barriers
 - OFTOs & interconnectors treated as separate legal entities
 - Different remuneration regimes

Country Comparison - Netherlands

TSO Monopoly on OTA development

- Since 2015 TenneT have operated as "TSO at Sea"
- Grid connection takes place at OWF
 - TenneT fully responsible for building "Grid at Sea"
- Motivated by co-ordinated OWF development
 - Centrally planned roll-out
 - Standardised 700MW design
 - Opportunity to cluster / share assets
- Study² suggests offshore transmission asset costs competitive with if not cheaper than UK developments

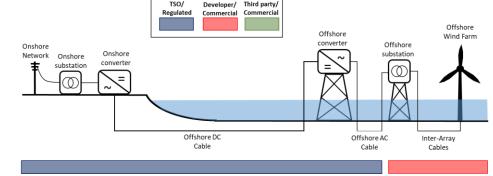
- Largely radial developments with some co-ordination
- Hub connections possible but not implemented
- Hybrid connection should be possible under existing regime with few legal / regulatory barriers
 - TenneT own both interconnectors and "Grid at Sea" so fewer legal barriers to merger


2. Navigant - Connecting Offshore Wind Farms: a comparison of offshore electricity grid development models in Northwest Europe, 2019

Country Comparison - Belgium

TSO Monopoly on OTA development

- Elia responsible for all OTA development
- Modular offshore Grid (MoG) concept
 - Elia build "plug at sea" offshore hub and transmission link to shore
 - OWF developers responsible for connection to offshore hub
- Motivated by co-ordinated OWF development
 - Centrally planned roll-out to minimise total infrastructure


- Hub connections currently being implemented
- Hybrid connections potentially possible under current regime
 - Although 50% TSO ownership rule for interconnectors may be tested in multi-terminal offshore grid scenario

Country Comparison - Germany

TSO Monopoly on OTA development

- TenneT (North Sea) and 50Herz (Baltic Sea) responsible for OTA development out to OWF substations
- TenneT 1st to make use of large scale HVDC deployment in hub design approach
 - 9 operational HVDC platforms and more under development
- Motivated by co-ordinated OWF development and long distances from shore
- Experienced a number difficulties with project delays / stranded assets / interface issues
- Study³ suggests low cost pressure on TSO lead to higher costs

- HVDC hub connections already implemented
- 1st Hybrid connection under construction with Denmark
- Kriegers Flak Combined Grid Solution
 - 400MW link between existing German and Danish OWFs
 - Facilitated by TSO TSO co-operation, no third party ownership barriers

3. DIW ECON – Market design for an efficient transmission of offshore wind energy, 2019

Conclusions

- GB OFTO developer led model successful to date
 - Competitive tenders seen to drive down costs but tailored to radial approach
 - Popular with developers Denmark moving from TSO to developer led approach for next tender
- TSO model can be cost competitive and allows more co-ordinated approaches
 - German experience more costly to date but low prices delivered elsewhere in Europe
- Given...
 - Need to minimise overall infrastructure footprint
 - Limited availability of onshore landing sites
 - Need to export surplus energy (or re-purpose for other uses power to gas?)

... Can long-term targets be met without co-ordinated network development?

- Could the UK regulatory model combine benefits of co-ordinated planning and competitive tendering? What would be the key enablers?
- Going beyond the national level how could the UK facilitate cross-border hybrid offshore grid development?

Andy Hogg

Head of Energy Industries Division, Scottish Government

Dr Zeynep Kurban

Strategy Manager – System Integration of Renewables, ORE Catapult

Dr Graham Ault

Executive Director, Smarter Grid Solutions

Lorna Archer

Project Officer, Energy Futures, SGN

Dr Callum Maclver

Programme Manager - Electrical Infrastructure Research Hub, University of Strathclyde

Tweet @ScotRenew @ORECatapult

Tackling the barriers

Mike Hay Commercial Director RIDG

Gavin Smart Head of Insights ORE Catapult

Tweet @ScotRenew #SROFFSHORE20

Scottish Renewables Offshore Wind Conference Session 5a: Tackling the Barriers ORE Catapult Background Presentation

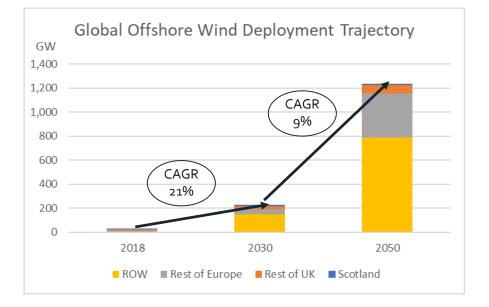
29/01/2020

Gavin Smart

Our mission To accelerate the creation and growth of UK companies in the ORE sector

Our vision By 2023, ORE Catapult will be the world's leading offshore renewables technology centre

- Centres of Excellence
- Academic Research Hubs in partnership with leading universities
- Expanding our assets in Blyth and Levenmouth the world's foremost open-access facilities



Agenda

- Scale and pace of deployment
- Deep water challenge
- Grid challenges
- Connecting challenges and opportunities

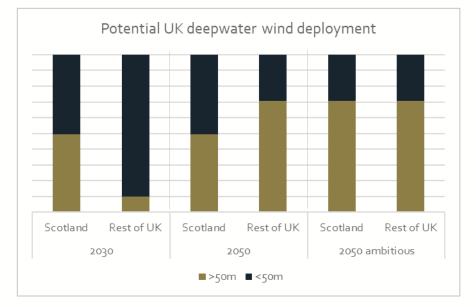
Scale and pace of deployment

UK Offshore Wind Deployment Trajectory GW 160 140 120 100 80 60 40 20 2018 2030 2050 ■ Rest of UK ■ Scotland ≋ Further electrification ■ Offshore electrification

- ROW dominated by Asia (80%)
- WindEurope 2050: Europe targeting 450GW

Sources:

- IEA Remap, July 2019
- WindEurope "Our Energy, Our Future", Nov 2019
- UK trajectory based on targeting 40GW and 80GW


- WindEurope 2050: Scotland 10GW; Rest of UK 70GW
- Implies minimal deployment beyond current pipeline

BUT

- OSW effectively curbed in system modelling to date
- Opportunities for more widespread electrification
- Opportunity to decarbonise offshore hydrocarbons
- Route to market for floating wind likely to be key

Deep water

UK-wide Solutions

Floating Offshore Wind Centre of Excellence

Deep Water – a UK-wide challenge

- LCOE for current floating 4-5 x £40/MWh CfD
- LCOE for next floating ~3 x £40/MWh CfD

For 8oGW in UK by 2050 (inc. 10GW Scotland):

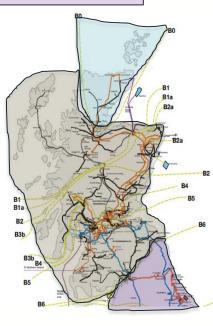
- Scotland has near-term need but relatively modest
- For 10GW in Scotland, 2050 need no greater
- For 70GW in rest of UK, 2050 need is significant

For increased ambition

- At least 70% in waters >50m
- Offshore O&G powering and Hydrogen production

Floating Wind: The UK Industry Ambition, October 2019

Scottish grid


Challenges – onshore capacity

- Scotland already net exporter 14.7GWh in 2018
- Additional generation capacity
- -> Power flows becoming more than grid can accommodate

2020-2030 – Bo

2020-2030 – B1-B5

2030-2040 – B6

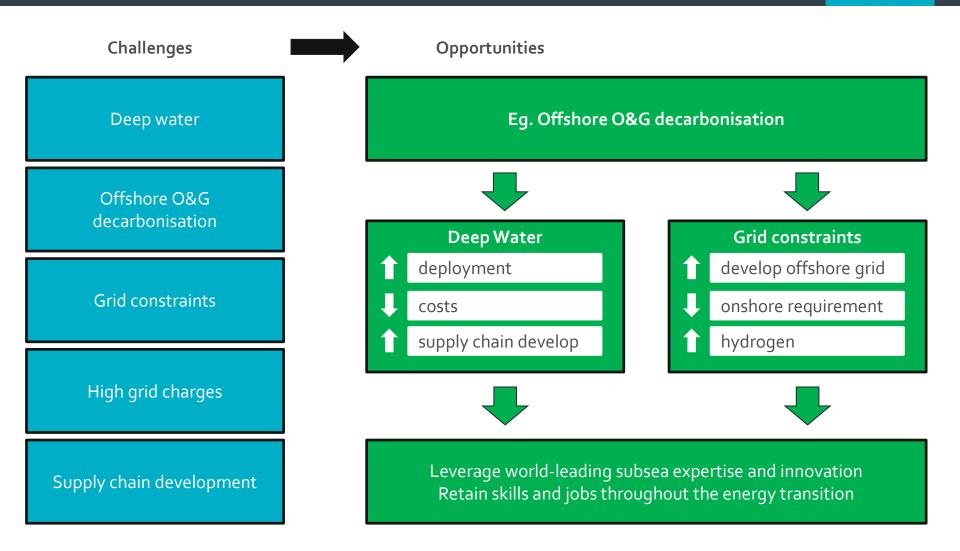
Work underway "Scottish Offshore Wind & Grid Connection"

CATAPULT

Floating Offshore Wind Centre of Excellence

Solutions

- Traditional passive grid reinforcements
- Active solutions
- Increased interconnection GB and Europe
- Offshore Hydrogen production


- Large-scale batteries/storage
- Shared offshore connections (eg Germany HVDC)
- North Sea offshore grid

Bernd Radowitz

Challenges and opportunities connected

Contact us

Email us: <u>info@ore.catapult.org.uk</u> Visit us: <u>ore.catapult.org.uk</u>

Engage with us:

BLYTH LEVENMOUTH HULL ABERDEEN CORNWALL PEMBROKESHIRE

CHINA

ore.catapult.org.uk

GLASGOW

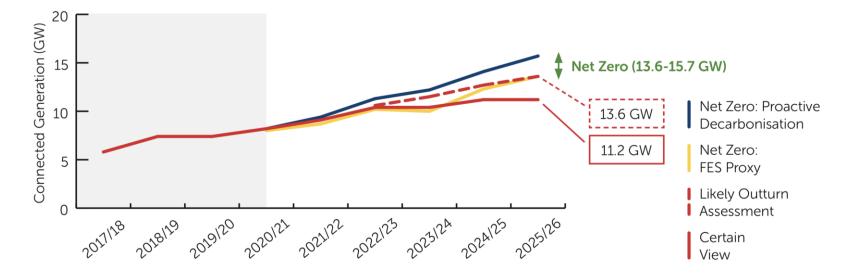
Christianna Logan Director of Customers and Stakeholders Scottish & Southern Electricity Networks Transmission

> Tweet @ScotRenew #SROFFSHORE20

A Network for Net Zero

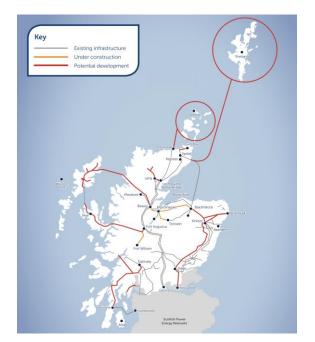
Five years. Five clear goals.

Transport the renewable electricity that powers 10 million homes Aim for 100% transmission network reliability for homes and businesses Every connection delivered on time


One third reduction in our greenhouse gas emissions

£100 million in efficiency savings from innovation

Delivered for around £7 a year


Net zero emissions pathways for generation connected in the north of Scotland

[†]Net Zero – the UK's contribution to stopping global warming, the CCC, 2 May 2019. Available at: www.theccc.org.uk/publication/net-zero-the-uks-contribution-to-stopping-global-warming/ [‡]Includes non-renewable generation, the total connected renewable generation is expected to be 6.8 GW

Investment – challenges and opportunities

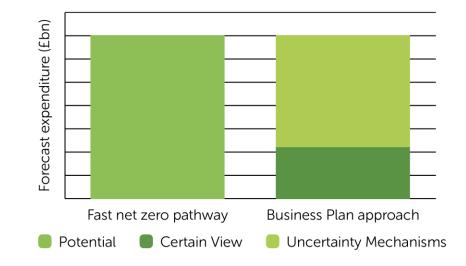


Figure 1.8 Our forecast of the potential expenditure to achieve the 'fast' net zero pathway: certain and uncertain

An Ambitious Plan to meet GB Stakeholders' Needs

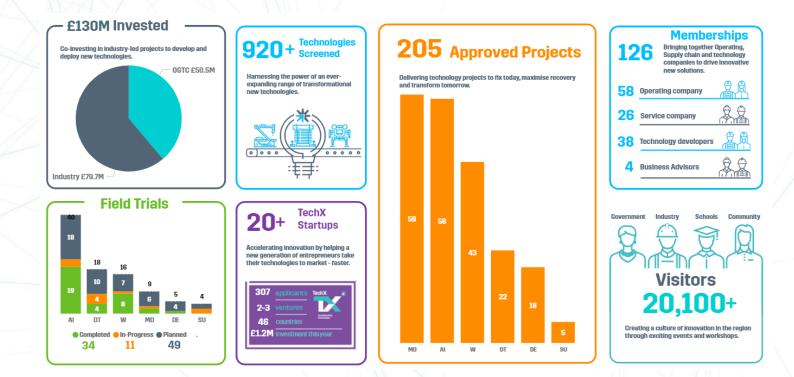
Ofgem call for evidence: closes 10th February

Open hearing: 26th March, Perth

Sign-up online at: https://www.eventbrite.co.uk/e/ofgems-riio-2open-hearings-tickets-83632122931

Christianna Logan Christianna.logan@sse.com

Martyn Tulloch Net Zero Solution Centre Manager OGTC


Your innovation partner

The Oil & Gas Technology Centre Your Innovation Partner *

Martyn Tulloch Net Zero Solution Centre Manager

Our Track Record

Delivering strong results

Our Technology Vision

Fix today

Data access

Production optimisation

Efficient

decommissioning

Revitalise exploration

Alternative well barriers

Unlock Potential

Tieback of the Future

Automation

Integrated

energy

Remote

intelligence

New materials

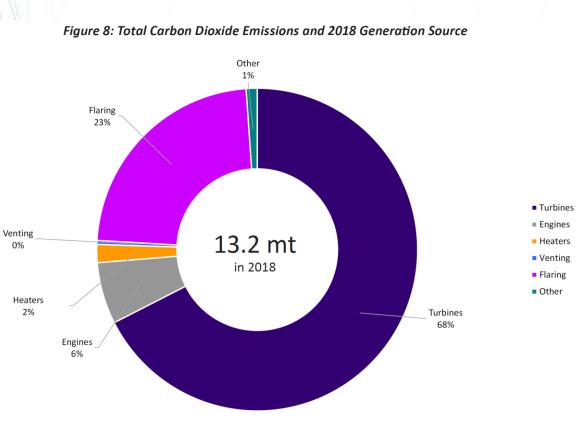
Unmanned facilities

Transform tomorrow

Low carbon operations

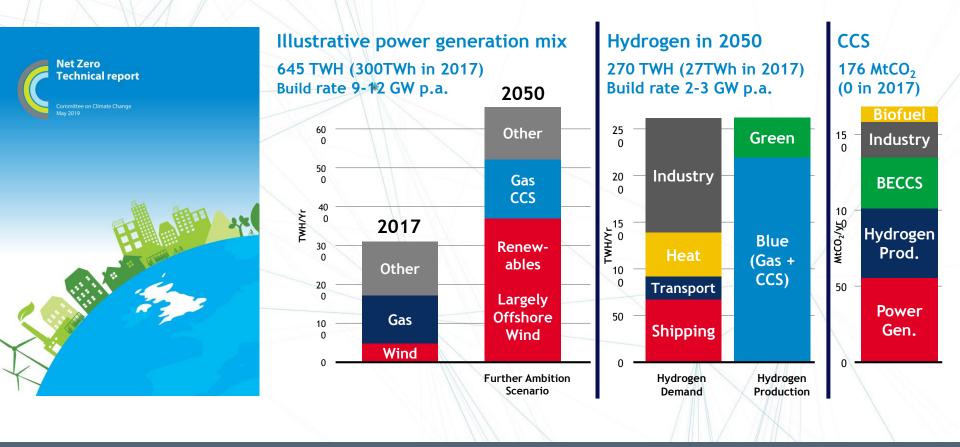
Reusable infrastructure

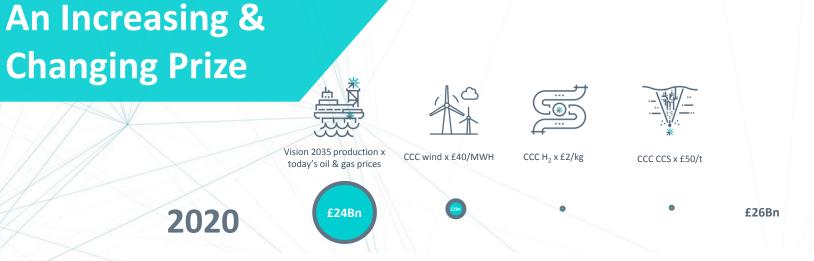
Hydrogen delivery


driven

Zero carbon developments

Decarbonising the industry for the Net Zero future


米


Energy 2050 – A reimagined North Sea

UK

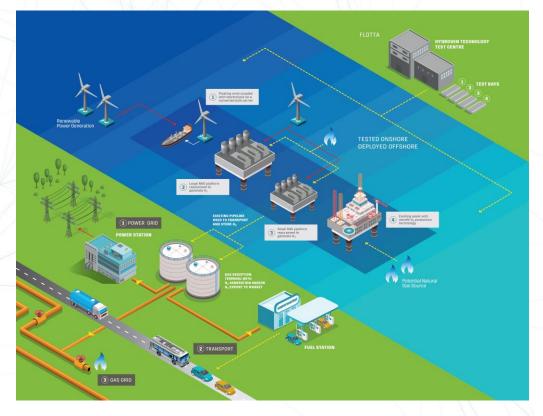
*

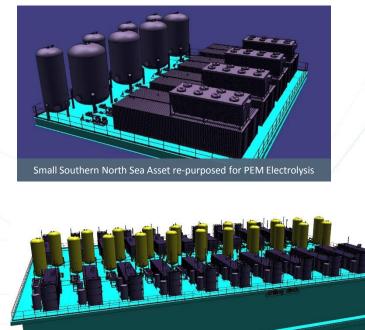
Carbon neutral basin developing, testing and exporting technology

不

A Period of Transition – Opportunity for UK Supply Chain

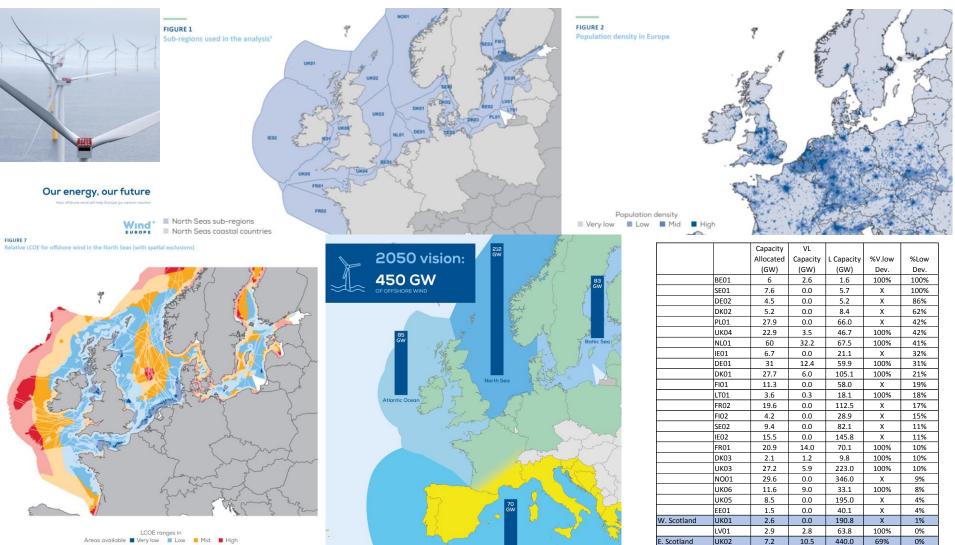
Marine Renewables





Delivering strong results

Hydrogen Offshore Production (HOP)



Large Northern North Sea Asset re-purposed for SMR

Delivering strong results

Areas available Very low Low Mid High Areas excluded Very low Low Mid High

Carbon neutral basin developing, testing and exporting technology

Net Zero Roadmap V3

¥

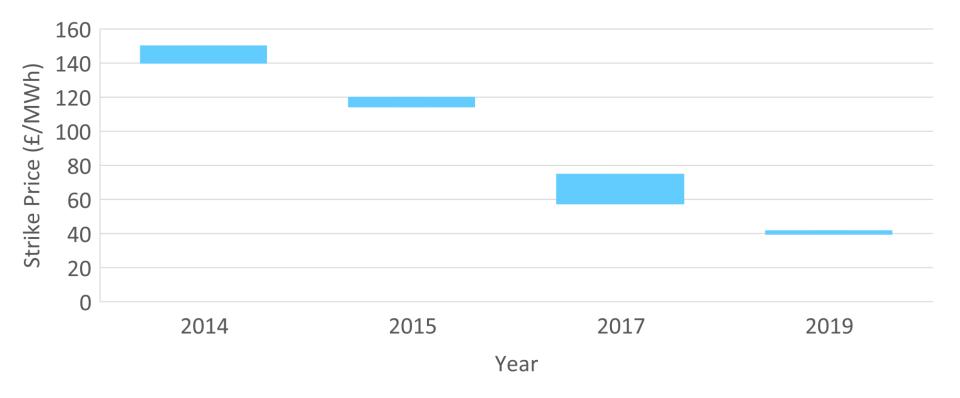
Net Zero Basin

Net Zero UK Economy enabled by the UK Continental Shelf Industries, including Oil & Gas

Net Zero Offshore Operations Offshore Renewables Integration Hydrogen Production Carbon Capture Utilisation & Storage

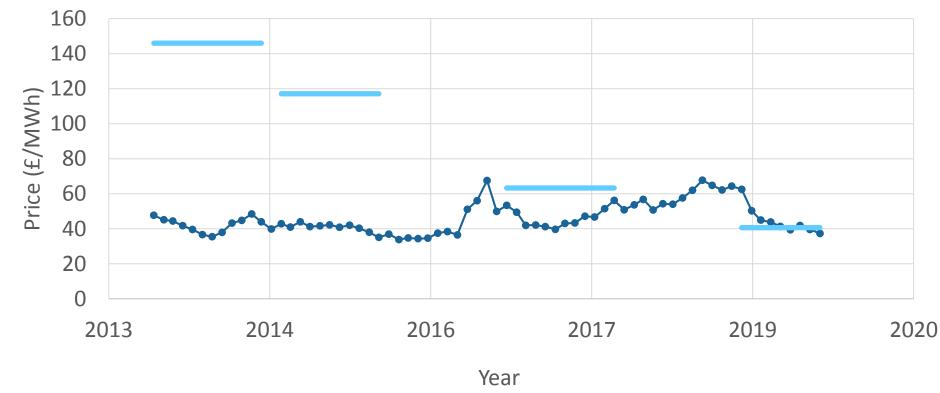
Carbon neutral basin developing, testing and exporting technology

Lorraine Monaghan Interface Manager K2 Management

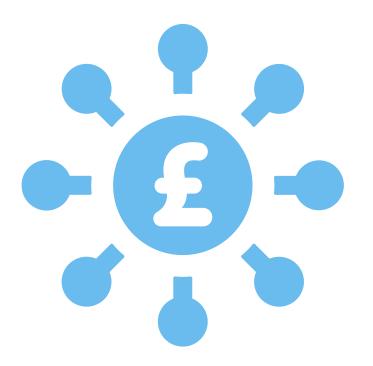

Challenges of Low Offshore CfD Strike Prices

Lorraine Monaghan

For better energy projects



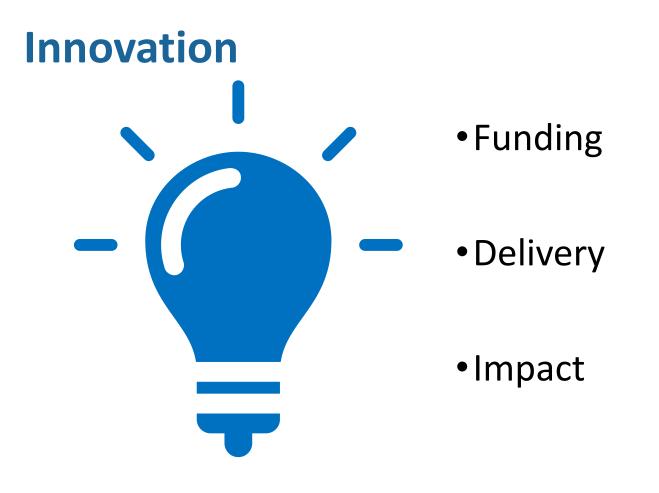
Offshore CfDs: A declining price trend



CfD Strike Price Vs Wholesale Electricity Price

Investment

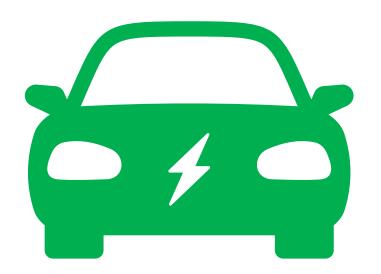
- High risk and low return
- Attracting and maintaining investment
- Supply chain



Sustainability

• Local contribution requirements vs competitive global business

•Time



For better energy projects

Driving Forward

Investment

• Supply chain

Innovation

Mike Hay Commercial Director, RIDG

Gavin Smart Head of Insights, ORE Catapult

Christianna Logan

Director of Customers and Stakeholders, Scottish & Southern Electricity Networks Transmission

Martyn Tulloch

Net Zero Solution Centre Manager, OGTC

Lorraine Monaghan

Interface Manager, K2 Management

Tweet @ScotRenew

#SROFFSHORE20

IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE, EXHIBITION & DINNER 28 & 29 JANUARY 2020 GLASGOW

SDIC

DEME

Developing the supply chain the Offshore Wind Growth Partnership in action

Zoe Barnes Strategy Manager Everoze

Claire Canning OWGP Programme Manager ORE Catapult

OWGP Funding Competition

Claire Canning 29th January 2020

Pilot Funding Competition

Strand B: Business Competitiveness Call

Competitiveness from advanced manufacturing/fabrication techniques

- £200K funding pot
- To encourage and support UK companies to explore new manufacturing methods and techniques to improve productivity and facilitate cost reduction.
- Funding will enable access to specialist expertise to overcome a manufacturing challenge that cannot otherwise be solved by the company by itself.
- Projects must include work with external specialists (Delivery Partners) to bring new knowledge to the company.

Pilot Funding Competition

Strand D: Supply Chain Futures

Advanced sensors, IoT and communications solutions for offshore wind

- £200k funding pot
- To support companies developing innovations and Intellectual Property (IP) to expand their range of products and services for the future needs of the sector.
- Funding will enable the development of innovative concepts in the area of advanced sensors, Internet of Things (IoT) and communications solutions, e.g.
 - >Sensors for data collection, local communications, IoT
 - >Long-range communications (satellite, RF, mobile, fibre)
 - > Data logging and pre-processing e.g. cloud/web-based service platforms
 - Immersive content e.g. Virtual Reality (VR), Augmented Reality (AR)

Pilot Funding Competition

Company	Strand	Project	Delivery Partner
Global Energy Group	В	Application of AIML to renewables fabrication	National Composite Centre (NCC)
Cedeco	В	Composite Spoon Wedge Feasibility Study	Nuclear Advanced Manufacturing Research Centre (NAMRC)
W3G Marine	В	Robotic welding feasibility study	Cyberweld
Magnomatics	В	ROBOMAG (Robotic placement of large rotor magnets)	Advanced Manufacturing Research Centre (AMRC)
Cognitive Business	D	WAVES: Wind Accessibility Verification for Enhanced Safety	N/A
Sennen Tech	D	Improved efficiency of O&M through generation of lost production metrics	N/A
Smart Component Technologies	D	Remote monitoring of safety and performance critical fasteners for OSW cost reduction	N/A

Projects will aim to commence March 2020

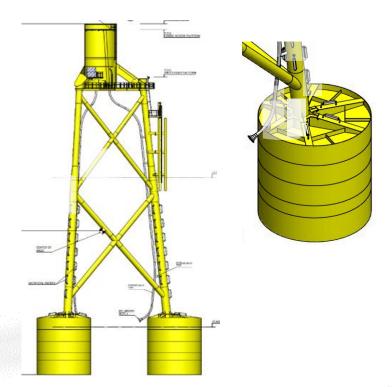
Steve Chisholm Operations Director Global Energy Group

Artificial intemgence

e

actai

The Application of AIML To Renewables Fabrication



To complete requires ground breaking innovation. Matching "state of the art" or "best in class" only gets you to where your rivals were yesterday. Not cost of labour or infrastructure dependent.

The Solution

GLOBAL ENIERGY GROUP

Create intelligent machines that can emulate best human performance for welded manufacture and enable new methods of inspection. Enhance existing automation and open up new product applications.

GLOBAL ENERGY GROUP WORKING with the NUCLEAR AMRC

The Nuclear AMRC – Partner of Choice

- Launched 2012
- Faculty of University of Sheffield
- £27 Million Capital Equipment
- c £1.5 Million Relevant R&D Works
- Delivering Savings of 25% to 50%

Research Scope

- Welding Robotics
- In Process Monitoring & Controls
- Machine Learning
- 4IR Autonomous Decision Making

Innovation In Manufacture

GEGROUP.COM

Welding - Today's Leading Edge

Welding Innovation For Tomorrow

- Spatially Aware, Self Set Up
- Adaptive to Changing Geometry
- High Quality / High Deposition
- Platform for Grinding / Inspection

Current Inspection Practice

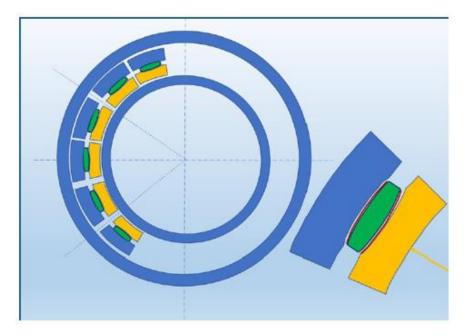
Future In-Process Inspection

- Defect / Anomaly Detection
- Reduce / Eliminate Traditional NDT
- Deploy Intelligent Vision Systems and Real Time Data Analysis

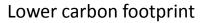
Jacqueline Morrison Business Development Lead Cedeco

An improved installation technique for offshore wind

Saving £215,000 - £290,000 per foundation installation



The challenges we believe composites help us overcome...


Lighter means easier to handle

Weight

Lighter means easier to transport

Manufacturability

Non-corrosive

Jacqueline

https://www.linkedin.com/in/ jacquelinemorrison/

lain

https://www.linkedin.com/in /iain-steven-98b75680/

David Latimer CEO Magnomatics

Magnomatics®

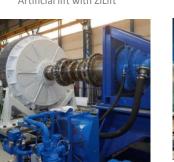
The dawn of magnetic gears

David Latimer – Magnomatics OWGP Project

© 2020 Magnomatics - Confidential

Magnomatics – Current Engagement

Magnomatics[®]


Hybrid Vehicles Application Ready Gate Review Completed Jan 2020

Marine Propulsion Electrification partner SMD Electric Quantum ROV

Oil & Gas In small volume production Artificial lift with ZiLift

Renewable Energy - Wind INNWIND.EU and DemoWind 500 kW demonstrator

Aerospace Grant funded development CleanSky Project award Jan 2020

Rail Development of 9,000 Nm traction motor for global OEM

Consultancy Services F1 KERS Motors High efficiency drives for industrial use

Renewable Energy - Ocean Eurostar Marine Current - Seaplace Eurostar Turning Tide – awarded Jan 2020

© 2020 Magnomatics Limited

Magnomatics[®]

Magnomatics 10MW PDD versus Geared Permanent Magnet

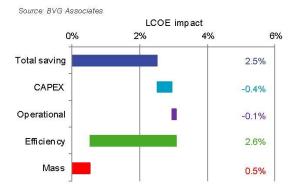
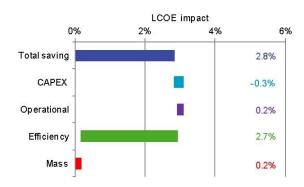
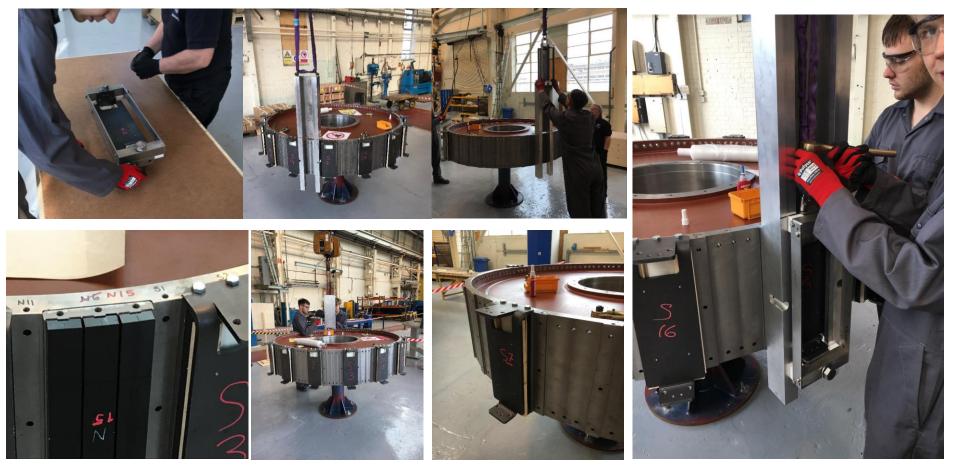


Figure 1 Source of LCOE saving for PDD compared to the conventional direct-drive drivetrain.

Magnomatics 10MW PDD versus Direct Drive Permanent Magnet

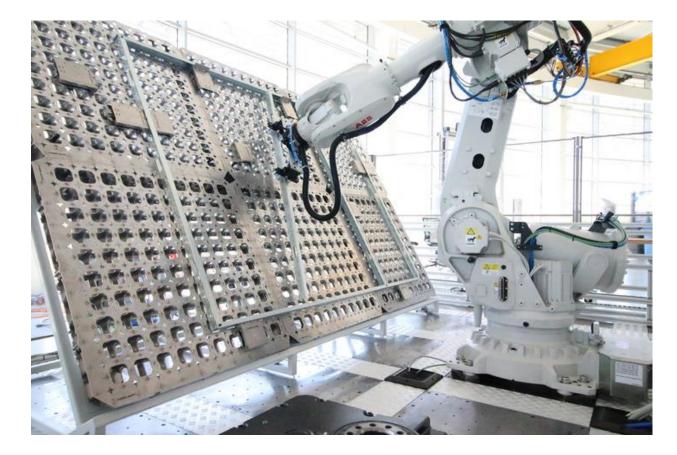



Figure 2 Source of LCOE saving for PDD compared to the conventional geared drivetrain.

© 2020 Magnomatics Limited

High speed magnet rotor – prototype build

Magnomatics[®]



© 2020 Magnomatics Limited

Robotic magnet placement

Magnomatics[®]

- Quicker
- Cheaper
- Safer

Anchoring manufacture in Sheffield City Region and the UK

Questions?

Magnomatics Limited Park House Bernard Road Sheffield S2 5BQ UK

Tel: (+44) 114 241 2570 Email: magnomatics@magnomatics.com

www.magnomatics.com

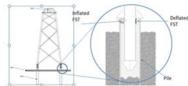
John Giles Technical Director W3G Marine

SCOTTISH OFFSHORE WIND CONFERENCE 2020 W3GM PILE GRIPPER SYSTEM

Delivering Marine & Subsea projects

W3GM Background Information

W3GM started as an O&G offshore construction contractor, and has migrated into the offshore renewables sector.


Now 90% of our income is from the renewables sector

Here are some of the projects we have been involved with over the years

OWGP supported project

- Typically jacket type foundations are used to support offshore wind turbines.
- They are secured to the seabed with pin piles hammered in, and the jacket is lowered into the piles
- The mechanical connection between the pile and the jacket leg is a grouted connection
- To ensure a good grout connection, the leg must be held still while the grout cures
- The W3GM tool is an inflatable gripper that creates a radial force to hold the jacket during the curing process
- The W3GM FST has been developed to including:
 - An offshore trial on EA1
 - Interest from domestic and export projects
 - OWGP is giving support to develop a quicker and more consistent way of making each element using robots

ROBOTIC WELDING PRODUCTION

- A potential project requires 750 units to be made per month
- Robotic welding ensures consistent quality and production rate
- Robotic technology is readily available from other sectors of manufacturing industry
- Most of the supply chain is NE Scotland based

- This funding will allow us to investigate and develop robotic welding technology and bring it to the NE of Scotland
- W3GM will increase the number of people employed (expected 14)
- Most the products fabricated during this project will be exported

Ty Burridge-Oakland Managing Director Cognitive Business

Have some news to share? Get in touch: info@cognitive.business

Cognitive

Project WAVES - Cognitive partners with RWE and JFMS for Offshore Wind Growth Partnership (OWGP)

We create software that uses Industrial Internet of Things (IIOT) data to make power generation more efficient, and reliable.

Challenge

The safe management of offshore transfers is a well-recognised challenge within the industry, involving a complex interaction of many meteorological and oceanographic variables alongside individual vessel and crew capabilities. Often the conditions are highly variable at different turbine locations, even within the same wind site. Due to the complexity of this multivariate interaction the industry has been unable to forecast access accurately, instead relying on the vessel and transferring crew to dynamically assess the situation and make a decision on whether a transfer can take place safely. Influencing factors such as: production pressure, risk appetite, inexperience, job insecurity, bravado, and appetite to work can all influence a decision, which has significant consequences either in terms of putting personnel at risk or resulting in significant under-utilisation of the workforce. Amidst the digital era, there is a better, safer, way to support these decisions

Access to turbines has been one of our largest headaches through this winter period

RWE Renewables Operations Team

Have some news to share? Get in touch: info@cognitive.business

Project WAVES - Cognitive partners with RWE and JFMS for Offshore Wind Growth Partnership (OWGP)

Cognitive have agreed partnership with RWE and James Fisher Marine Services for project WAVES (Wind Accessibility Verification for Enhanced Safety) to develop a unique data-led decision tool to enable highly accurate, localised assessment of safe conditions for vessels to turbine transfers. Providing a step change in safe transfer decision making and optimising scheduling of costly resources.

Using accessibility modelling from industry benchmark data [OREC] combined with O&M costs [RWE], £156m/yr of resources are wasted due to inaccessibility

WAVES could enable the reduction of these losses by ~15%.

Access to turbines has been one of our largest headaches through this winter period

RWE Renewables Operations Team

Have some news to share? Get in touch: info@cognitive.business

Project WAVES - Cognitive partners with RWE and JFMS for Offshore Wind Growth Partnership (OWGP)

Cognitive have worked extensively across wind and other power generation sectors.

They provide tools for industry and the outcome from WAVES will be designed for integration into existing platforms including systems like JFMS OWMS, and our own Discovery platform.

Access to turbines has been one of our largest headaches through this winter period

RWE Renewables Operations Team

Gaby Amiel CEO Sennen Tech

Your technology partner for simpler, safer operations

About Sennen

We are a **technology partner** for offshore wind, not just a software company.

We **understand**. We get the technical and logistical challenges in operations and asset management, and we know how to digitise work processes effectively.

We are **unique**. We rapidly configure applications to fulfil specific work processes incorporating, not replacing, your existing systems.

We are **experienced**. Our team has extensive, hands-on experience in offshore wind projects.

Harnessing Site Record Data

Work Optimization Personnel & qualifications Work orders Shift planning Vessel manifest Defects

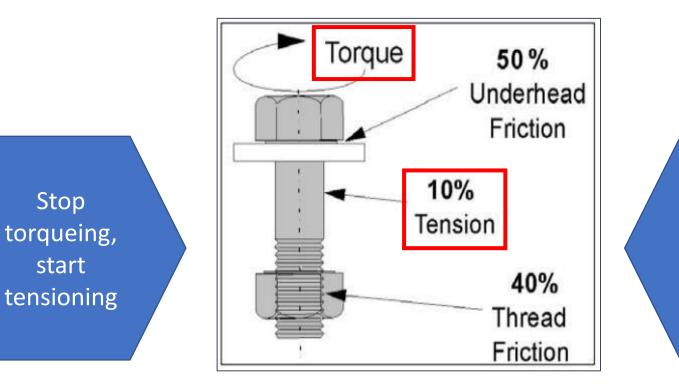
4248 - HSE Event Cuse: Faulty gete mechanism	
	This Hill Event Courts avectar
Insula: The gate opening mechanism has failed. It does not open at close servedly. This caused publices as we had the assarby look belt gates open to settere the third Table collision.	teurine active Teurine Active Permissione
Andpead Team. HE: Andpead Te. Anno de Adre	1 Inited HIZ event
Lasten Mitte	Allaciments
Colograp Context	9 minimuter 1
Owahel Or: 12/06/2013 Decide: 29/06/2019	
Currents	
15 Jan 2015 - 1924 JJ bolffmain (JJII)	
20. Jun 2015 - 1934 Anna de Bute (Seewerk)	
ing in the material is it. They have also period on the grant method with the sign. The poles are sain also approve people are using the entry pole as at est.	
MEDante (1) B. Artine (2) Addres (14)	
Normal Sectory	
Date up to the second s	
043E-30 AR 2019	
(F)	
Safety Assuran	се

Incident reports Automated validation and alerts Location restrictions Workflow process with management oversight Risk tracking and mitigation

Real-time GIS maps with full history Departure board Transfers of control (WTSR) Personnel tracking SCADA integration Met-ocean forecast

The Project

Jack Hughleigh Technical Director Smart Component Technologies



Remote Condition Monitoring of Bolted Connections

Dr Jack Bryan Hughleigh – Technical Director

Condition based maintenance

IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE, EXHIBITION & DINNER 28 & 29 JANUARY 2020 GLASGOW

SDIC

DEME

Project updates

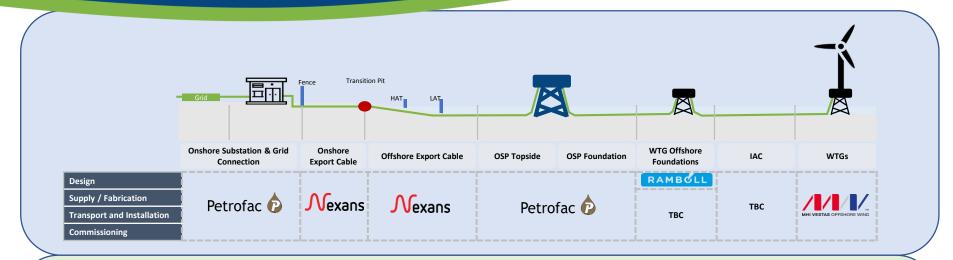
Morag Watson Director of Policy Scottish Renewables

Mark Timmons Offshore Bid Manager SSE Renewables

Mark Timmons, Offshore Bid Manager Seagreen Project Update Scottish Offshore Wind Conference – January 2020

Seagreen

- Scotland's largest windfarm, wholly owned by SSE
- 1,075MW export capacity, CFD for 454MW
- Expected to generate c5,000GWh annually •
- Final investment decision in first half of 2020 •



Timeline

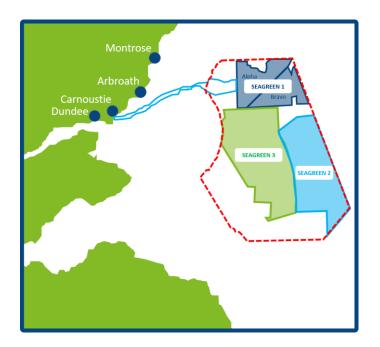
Contracting strategy

PORTS:

- O&M Base Montrose
- WTG pre assembly TBC
- Foundations Staging TBC

Supply Chain Plan

- UK content
- Offshore wind sector deal
- Meet the buyer
- WTG apprenticeships
- STEM skills fund £100k pa in construction
- Community benefit fund



Seagreen 2 and Seagreen 3

- Indicative Capacity
 - Seagreen 2 1400MW approx.
 - Seagreen 3 900-1850MW
- 2020 Scoping
- 2022 Consent
- 2025 Construction
- 2027 Operational

Keeping in touch

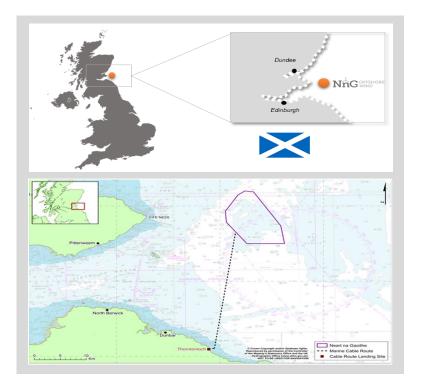
seagreenwindenergy.com

seagreeninfo@sse.com

0141 224 7192

Matthias Haag Project Director - Neart Na Gaoithe EDF Renewables

NEART NA GAOITHE

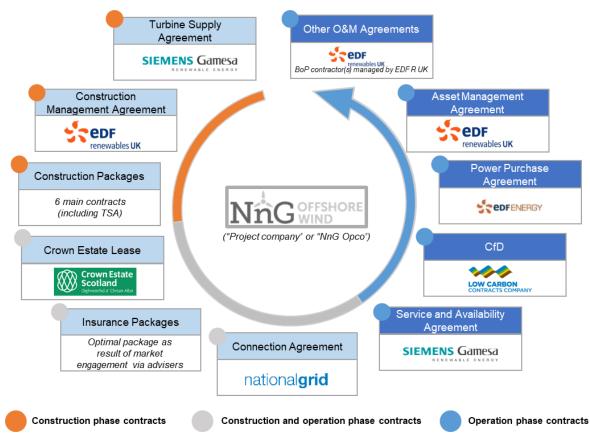

For Tomorrow's Generation

NNG Project Update

Glasgow 29/01/2020 Matthias Haag

High Level Overview

Key data	
Project capacity	= 448 MW
Load factor	■ c.48%
Turbines Type #	8.0 MW SGRE54
Foundation	3 legged jackets with pre-piled pin piles
Maximum rotor tip height	■ 208 m LAT
Array cables	c. 95 km of 66kV AC cables
Export cables	 2 offshore 220 kV HVAC cables of c.38 km 2 onshore 220 kV HVAC cables of c.12 km
Offshore substation	• 2 HVAC Offshore Substation each comprising one Offshore Grid Transformer
Grid connection	 Onshore transformer station adjacent to the existing Scottish Power Transmission substation at Crystal Rig II. Stepping up the voltage to 409 kV for grid connection



High Level Program

2018	Acquisition from MainstreamRecruiting and building team	\checkmark
2019	 Offshore and onshore surveys Tender/sign all construction contracts Project Finance and Equity Sale 	V
2020	 Manufacturing start & Onshore HVS/cables Clearing boulders/UXO Drilling of foundation piles 	
2021	 Foundation & OSS installation Export/Array cable installation Power systems live onshore/offshore 	
2022	 Turbine installation & commissioning First Power and start of operations OFTO sale planning and COD for 2023 	

Overview Main Contract Parties

Construction Contracts

	Constru	uction packages	Scope	Providers
1	Construction Agreement	on Management ("CMA")	Construction management services and certain asset management services related to the construction and commissioning of the wind farm	Centre Ce
2	Connection	Agreement ("CA")	Grid connection agreements with National Grid covering the connection to the existing Crystal Rig substation	national grid
	3 -	Turbine Supply ("TSA")	Fabrication, supply, pre-assembly, installation and commissioning of 54 SG-8.0- 167 WTGs	SIEMENS Gamesa
	4	EPCI Foundations ("FOU")	Design, fabrication, supply and installation of jacket WTG and OSS foundations Transport and Installation of Substation topsides	SAIPEM
	Lackage	WTG Installation Vessel ("WIG")	Charter for WTG installation vessel	📉 Fred.Olsen & Co.
	Construction Packages	High Voltage Stations ("HVS")	Design, fabrication, supply and pre-commissioning of onshore and Offshore Substations, electrical system design and SCADA	HSM offshore
	7	Export cables ("EXP")	Design, fabrication, supply, installation, termination and pre-commissioning for onshore and offshore export cables	Prysmian Group
	8 <i>E</i>	Inter-Array Cables ("IAC")	Design, fabrication, supply, installation, termination and pre-commissioning of inter-array cables EPCI of the 66kV platform interconnecting cable	Tideway Others Sectors

Start of Construction

Thank you

NNG – 'For Tomorrow's Generation'

Adam Ezzamel Project Director - Inch Cape Red Rock Power Limited

Inch Cape Offshore Limited

Adam Ezzamel, Project Director

January 2020

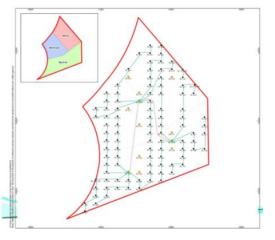
Inch Cape – post CfD

- Offshore development, up to 72 turbines, 15km off the Angus Coast
- Moving forward without CfD (round 3) and continuing to optimise the project
- Red Rock Power currently engaging with potential partners and considering PPA opportunities
- Expected to start onshore construction in early 2021, and offshore construction in late 2021.

Red Rock Power Limited

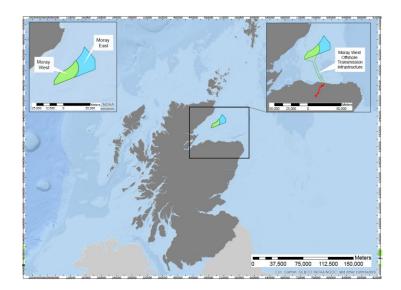
Adam Morrison Project Director - Moray West EDP Renewables

Moray East Offshore Wind Farm Overview


Moray East Offshore Wind Farm

Summary

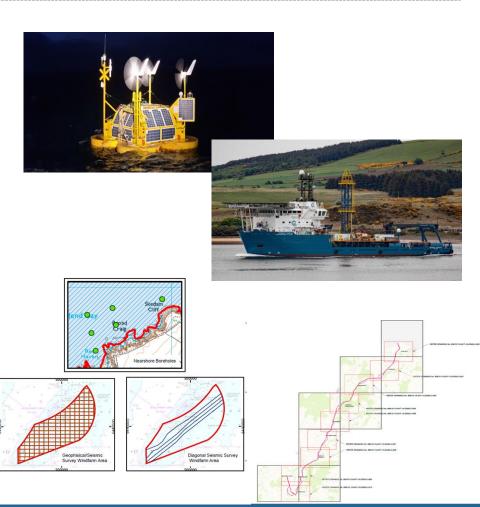
- 950MW offshore wind farm currently under construction:
 - > 2010: Development commenced.
 - > 2014 Consent awarded.
 - 2017: CfD signed following success in auction (lowest cost for offshore wind in the UK to date).
 - 2018: Financial close / onshore construction commenced.
 - > 2019: Offshore construction commenced.
 - > 2021: First generation.
- > 22km from the coast.
- ➢ Water depths up to 57m.
- > 100 turbines (MHI Vestas V164 9.5MW).
- ➢ 3 offshore substations.
- > Largest infrastructure project in Scotland:
 - > Equivalent to two Queensferry Crossings.
 - Will power the equivalent of 40% of Scotland's households.


www.moraywest.com

Project Overview

Project Summary

- > Located over 22km from the coast.
- > Water depth range: 35-55m.
- \succ Up to 85 turbines.
- 800MW grid connection secured at Blackhillock, near Keith.
- > Offshore and onshore consents in place.
- Sponsors have stated commitment and project team continues to develop and mature the project.
- > Major package procurement now underway.



The Last 12 Months

2019 project activities were focused around onshore and offshore consenting, as well as site characterisation.

- > Offshore consents awarded in June 2019!
- > A floating LiDAR campaign commenced and is continuing.
- Extensive offshore geotechnical and geophysical surveys were undertaken within the wind farm site and along the offshore export cable corridor.
- > Landfall site investigation undertaken to inform detailed design.
- > Onshore cable corridor site investigation undertaken.

2020 Project Activities

Focus on progression of engineering and major package procurement, as well as continued effort on discharge of consent conditions.

- During 2020 the project expects to advance procurement and associated engineering for all key work packages. Contracting would be finalised for the whole project during 2021.
- > The project is also in the process of assessing construction and operations & maintenance ports.
- The project is utilising the Open4Business portal platform which is operated by Inverness Chamber of Commerce for advertising ongoing procurement processes relating to the project.

SSCC 25 February Glasgow, Scotland

Moray West (Offshore Windfarm)

Atria One, 144 Morrison Street, EDINBURGH. EH3 8EX info@moraywest.co.uk

+44 (0) 131 556 7602

www.moraywest.co.uk

Morag Watson **Director of Policy, Scottish Renewables** Mark Timmons Offshore Bid Manager, SSE Renewables Matthias Haag Project Director - Neart Na Gaoithe, EDF Renewables Adam Ezzamel Project Director - Inch Cape, Red Rock Power Limited **Adam Morrison** Project Director - Moray West, EDP Renewables Tweet @ScotRenew **#SROFFSHORE20**

IN ASSOCIATION WITH

OFFSHORE WIND CONFERENCE, EXHIBITION & DINNER 28 & 29 JANUARY 2020 GLASGOW

SDIC MR Red Rock Power Limited

DEME

