

Transforming Transport: Getting from A to EV

Claire Mack Chief Executive Scottish Renewables

Andy Robinson Head of Ultra Low Emission Vehicle Delivery Transport Scotland

Transforming Transport – Getting from A to EV

ANDY ROBINSON

TRANSPORT SCOTLAND

LOW CARBON ECONOMY DIRECTORATE – Collaborative, Imaginative, Focused TRANSPORT SCOTLAND

Context

LOW CARBON ECONOMY DIRECTORATE – Collaborative, Imaginative, Focused TRANSPORT SCOTLAND

MISSION

Phase out the need for new petrol and diesel cars and vans by 2032

Priority 1 Support a user focused, state-of-the-art network of charge points supporting Scotland's energy needs Priority 2 Embed new skills and capabilities into the Scottish workforce Priority 3 Scottish businesses engage in and benefit from the shift to ULEVs Priority 4 Incentivise consumers to make informed choices on the purchase, access and use of ULEVs

OUTCOMES

Scotland at the forefront of growth in ULEV markets. A fair distribution of investment costs, benefiting all consumers. Business benefitting from new markets and technologies

How

ORIENTATION – making sure we're collectively focused on the right things.

The PfG 2032 commitment has set out a bold and clear mission that is already helping to motivate the public and private sector. It is now need to build on this motivation to establish a clear and common sense of purpose and activity across the public, academic and commercial sector that matches our ambition.

IMPACT – making sure we invest our time in the right things

Delivering transformative action will require us to translate the motivation, capabilities and evidence we develop into focused areas for collaboration, investment and influence.

CAPABILITY – making sure that we have the collective capacity and capabilities to deliver transformative action

Much of our success will depend on our ability to establish the explorative capacity and capabilities needed to deliver on the SGs PfG and low carbon ambitions. This means enhancing capabilities and collaborations across the public sector, and supporting the pull through of new technologies, business models and skills within the commercial sectors. Outputs from our orientation work will inform the focus of this work.

Current Delivery focus

- Circa £50 annual investment programme, co delivered by TS and EST.
- Supports vehicles uptake and deployment of charging infrastructure

Delivery initiatives will change substantially as policy framework develops (market facing and innovation focus)

Vehicles in Scotland, 2018

Cars Light Goods Vehicles Motorcycles Heavy Goods Vehicles Buses and coaches Other vehicles 1

Data from <u>Department for Transport Statistics</u> for Quarter 3 2018

LOW CARBON ECONOMY DIRECTORATE – Collaborative, Imaginative, Focused TRANSPORT SCOTLAND

CPS: Unique Users per Year

CPS: Plug-In Market

LOW CARBON ECONOMY DIRECTORATE – Collaborative, Imaginative, Focused TRANSPORT SCOTLAND

CPS: Utilisation

CPS: Hour of Charging

Future Challenges & Opportunities

- Repurposing our transport infrastructure
- Energy network issues
- Innovation and commercial investment
- Uncertainty in social & technological trends

Thank you
Andy Robinson
Head of Ultra Low Emission Vehicle Delivery
Transport Scotland

Dr Simon Gill Energy Engineer Scottish Government

Transforming Transport – Getting from A to EV *Linking EV development to electricity networks*

21st February 2019

Dr. Simon Gill, Energy Engineer, Scottish Government

simon.gill@gov.scot

n <u>www.linkedin.com/in/simon-gill-energy/</u>

The Scottish Energy Strategy

The Scottish Energy Strategy

AN INCLUSIVE ENERGY TRANSITION

A SMARTER LOCAL ENERGY MODEL

2030 Whole System targets

50% EUR

THE EQUIVALENT OF 50% OF THE ENERGY FOR SCOTLAND'S HEAT, TRANSPORT AND ELECTRICITY CONSUMPTION TO BE SUPPLIED FROM RENEWABLE SOURCES

AN INCREASE BY **30%** IN THE PRODUCTIVITY OF ENERGY USE ACROSS THE SCOTTISH ECONOMY

The future of energy in Scotland: Scottish Energy Strategy

Scottish Government Riaghaltas na h-Alba gov.scot

œ

24%

Transport accounts for nearly a quarter of all energy consumption in Scotland (measured as gross consumption)

What is the potential impact of EVs on our energy system ?

Scottish Energy strategy

-OF

Source: National Grid FES 2018

4 A 4

National Grid ESO November 2018	Operability Strategy 2018	
Contents		
-		
02 Executive summary 03 Stakeholder engagement	26 Chapter 4 Restoration	
⁰⁵ Chaper 1 Introduction	28 Key messages 28 Introduction 27 Operability gap 29 Progress so far 31 Plan for future work	
08 Chanter 0		
Frequency control	33 Chapter 5	
09 Key messages 10 Introduction 11 Operability gap 13 Progress so far 15 Plan for future work	Stability 34 Kay messages 34 Introduction 38 Operability gap 38 Progress so far 39 Pian for future work	
17		
Voltage control	40 Chapter 6 Thermal	
20 Operability gap 22 Progress so far 23 Plan for future work	41 Key messages 41 Introduction 42 Operability gap 43 Progress so far 44 Plan for future work	

- Aligning electrical demand with low carbon generation
- Delivering sufficient low carbon electrify generation
- Ensuring sufficient generation Capacity when required
- Ensuring resources and flexibility and fast
- Managing frequency

이듬

Helping with the integration of Wind:

with intermittent

Impacts

Ξ

The electricity system needs a wide range of series – not just energy. Traditional service providers (large power stations) are closing. EVs have the opportunity to provide many if the markets are designed properly

Local Network Capacity : 1 – 5 kW per house

Diversity

Home charging of EVs has substantially changes some of the key assumptions on which networks are designed and operated

Œ

Local Network Capacity : 1 – 5 kW per house

Local Network Capacity : 1 – 5 kW per house How much more for EVs?

My Electric Avenue – impact of 3.5 kW EV chargers used with Nissan Leaf's in 2014 - 2016

Source: My Electric Avenue

"32% of low voltage (LV) feeders (312,000 circuits) will require intervention when 40% – 70% of customers have EVs, based on 3.5 kW (16 amp) charging"

Challenges for the Electricity networks of getting from A to EV

 \bigtriangleup *

Denis Naberezhnykh Technical Director – Sustainable Transport Ricardo

Delivering Excellence Through Innovation & Technology

Agenda

1. Introduction to Ricardo

2. Overview

- 3. Vehicle manufacturers
- 4. EV charging infrastructure

5. Conclusions

6. Q&As

Introduction to Ricardo

Introduction to Ricardo Group

- A global, multi-industry consultancy for engineering, technology, project innovation and strategy
- Revenue £332m
- Over 2,900 staff working in 40 offices worldwide
- Strategic acquisitions and business reorganisation; Vepro and Power Planning Associates, Lloyd's Register Rail and Cascade Consulting.

Engines

Vehicle Systems

Critical Systems

Strategic Consulting

Driveline & Transmission Systems

Environmental Consulting

Hybrid & Electric Systems

Energy Consulting

Independent Assurance

Niche Manufacturing

Test Services

Software

Introduction to Ricardo Energy and Environment

- Internationally-renowned consultancy
- Heritage of world-leading scientific/technical capability
- Providing analysis and solutions for major environmental challenges
- Client base of international governments and businesses
- Headquartered at Harwell Science Park, near Oxford
- Over 450 scientists and technical staff

Overview

Overview – current state of EV take up

A look at vehicle manufacturers

Vehicle manufacturers - regulations require automotive OEMs to increasingly shift to zero emission vehicles

Normalised CO₂ targets

Vehicle manufacturers - OEMs state they are committed to electrified and electric vehicle introduction; the number of models available is increasing rapidly

Plans 30 new

for up to 25%

of sales

EVs accounting

few years.

electric

2022

models in

production by

Expects 27

Electrified will include hybrids

FCEV = hydrogen fuel cell electric vehicle

© Ricardo plc 2017

GROUPE

To have 7

on EMP

PHEV and 4

BEV models

February 2019

45

Vehicle manufacturers – manufacturing estimates

EU vehicle production 2030 Split

Use of EV charging infrastructure

EV charging infrastructure – Charging infrastructure is available to support different recharging behaviours and business models

Typical Recharging Times for >400 km EV range with 85 kWh battery pack

EV charging infrastructure – Charging at locations where the vehicles are stopped for prolonged periods is #1 priority

- UK: 200K PiVs (~60K BEVs)
- UK: ~60K domestic chargers
- UK: 93% of EV owners have offstreet parking – likely to continue to at least 2025

Organisation	Region	Ideal public charger to EV ratio
European Council	EU	1:10
NDRC	China	1:8 – 1:15
IEA Electric Vehicle Initiative	Worldwide	1:8 - 1:15
EPRI	United States	1:7 – 1:14
NREL	United States	1:24
CEC/NREL	United States	1:27

Sources: Hall & Lutsey, 2017

- UK: ~19K public chargers
- UK: >4K rapid chargers)
- UK: ~1:10 (public charger : EV ratio)
- Public rapid chargers have very low utilisation (<10%)

Take up of EVs	Charging Infrastructure	Implications for Policy
 May be limited by vehicle availability 	• Charging at home and at work is a	 Need to incentives EV sales (e.g. ZEV
 2030: OEMs targeting up to 40% plug-in vehicle sales sales 	 Public charging utilisation appears to 	 scheme) – not just purchasing Continue to support hybrids and
2030: Around 20% BEVs		PHEVs – they are a critical transitional technology
 Most OEM focus is still on hybrids and PHEVs 	 Lack of successful business models and potential stranded assets 	 More focus on supporting domestic (including on-street) and workplace
 Strong demand in China – priority 	 Integration with smart grid, renewables, storage and smart 	charging
Drive of EV/a remains a key barrier		 Support emergence of new charging infrastructure business models
Price of EVS remains a key barrier	 Rapid chargers for longer journeys, commercial vehicles, taxis and car clubs are key 	 No ICE sales by 2032 would require extensive policy support

Denis Naberezhnykh Technical Director – Sustainable Transport

denis.naberezhnykh@ricardo.com

Claire Mack Chief Executive, Scottish Renewables

Andy Robinson

Head of Ultra Low Emission Vehicle Delivery, Transport Scotland

Dr Simon Gill Energy Engineer, Scottish Government

Denis Naberezhnykh

Technical Director – Sustainable Transport, Ricardo

Tweet @ScotRenew @ICEScotland @TheIET

Transforming Transport: Getting from A to EV

